Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 258: 119413, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38876422

RESUMO

Frequent detection of terbutaline in wastewater highlights its potential risks to human health associated in the environment. Exposure to terbutaline through contaminated water sources or food chain have adverse effects to human health. This work emphasized on the removal of terbutaline from wastewater using adsorption technology. Mechanochemically synthesized [Cu(INA)2] metal-organic frameworks (MOFs) and its magnetic composite ([Cu(INA)2]-MOF@Fe3O4) are designed with higher specific surface areas and tailored features to accommodate the molecular size and structure of terbutaline. Thus, batch experiment has been conducted using the [Cu(INA)2]-MOF and [Cu(INA)2]-MOF@Fe3O4 for the terbutaline adsorption. The adsorption efficiency achieved by the MOFs was 91.8% and 99.3% for the Cu(INA)2]-MOF and [Cu(INA)2]-MOF@Fe3O4 respectively. The optimum for the adsorption study included terbutaline concentration of 40 mg/L, adsorbent dose of 5 mg/L, pH of 11, temperature of 25 °C and equilibrium time of 40 min. The kinetics and isotherms have been described by pseudo-second order and Langmuir models, while the thermodynamics revealed the exothermic and spontaneous nature of the process. The promising performance of the MOFs is manifested on the ease of regeneration and reusability, achieving adsorption efficiency of 85.0% and 94.7% by the Cu(INA)2]-MOF and [Cu(INA)2]-MOF@Fe3O4, respectively at five consecutive cycles. The higher performance of the MOFs demonstrates their excellent potentialities for the terbutaline adsorption from the aqueous solution.

2.
Environ Res ; 256: 119235, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38810826

RESUMO

Dyes are the most ubiquitous organic pollutants in industrial effluents. They are highly toxic to both plants and animals; thus, their removal is paramount to the sustainability of ecosystem. However, they have shown resistance to photolysis and various biological, physical, and chemical wastewater remediation processes. Membrane removal technology has been vital for the filtration/separation of the dyes. In comparison to polymeric membranes, inorganic and mixed matrix (MM) membranes have shown potentials to the removal of dyes. The inorganic and MM membranes are particularly effective due to their high porosity, enhanced stability, improved permeability, higher enhanced selectivity and good stability and resistance to harsh chemical and thermal conditions. They have shown prospects in filtration/separation, adsorption, and catalytic degradation of the dyes. This review highlighted the advantages of the inorganic and MM membranes for the various removal techniques for the treatments of the dyes. Methods for the membranes production have been reviewed. Their application for the filtration/separation and adsorption have been critically analyzed. Their application as support for advanced oxidation processes such as persulfate, photo-Fenton and photocatalytic degradations have been highlighted. The mechanisms underscoring the efficiency of the processes have been cited. Lastly, comments were given on the prospects and challenges of both inorganic and MM membranes towards removal of the dyes from industrial effluents.

3.
Environ Geochem Health ; 46(4): 145, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38568460

RESUMO

Frequent detection of sulfonamides (SAs) pharmaceuticals in wastewater has necessitated the discovery of suitable technology for their sustainable remediation. Adsorption has been widely investigated due to its effectiveness, simplicity, and availability of various adsorbent materials from natural and artificial sources. This review highlighted the potentials of carbon-based adsorbents derived from agricultural wastes such as lignocellulose, biochar, activated carbon, carbon nanotubes graphene materials as well as organic polymers such as chitosan, molecularly imprinted polymers, metal, and covalent frameworks for SAs removal from wastewater. The promising features of these materials including higher porosity, rich carbon-content, robustness, good stability as well as ease of modification have been emphasized. Thus, the materials have demonstrated excellent performance towards the SAs removal, attributed to their porous nature that provided sufficient active sites for the adsorption of SAs molecules. The modification of physico-chemical features of the materials have been discussed as efficient means for enhancing their adsorption and reusable performance. The article also proposed various interactive mechanisms for the SAs adsorption. Lastly, the prospects and challenges have been highlighted to expand the knowledge gap on the application of the materials for the sustainable removal of the SAs.


Assuntos
Nanotubos de Carbono , Águas Residuárias , Polímeros , Sulfonamidas , Sulfanilamida , Preparações Farmacêuticas
4.
Chemosphere ; 351: 141218, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38266876

RESUMO

The widespread consumption of pharmaceutical drugs and their incomplete breakdown in organisms has led to their extensive presence in aquatic environments. The indiscriminate use of antibiotics, such as sulfonamides, has contributed to the development of drug-resistant bacteria and the persistent pollution of water bodies, posing a threat to human health and the safety of the environment. Thus, it is paramount to explore remediation technologies aimed at decomposing and complete elimination of the toxic contaminants from pharmaceutical wastewater. The review aims to explore the utilization of metal-oxide nanoparticles (MONPs) and graphitic carbon nitrides (g-C3N4) in photocatalytic degradation of sulfonamides from wastewater. Recent advances in oxidation techniques such as photocatalytic degradation are being exploited in the elimination of the sulfonamides from wastewater. MONP and g-C3N4 are commonly evolved nano substances with intrinsic properties. They possessed nano-scale structure, considerable porosity semi-conducting properties, responsible for decomposing wide range of water pollutants. They are widely applied for photocatalytic degradation of organic and inorganic substances which continue to evolve due to the low-cost, efficiency, less toxicity, and more environmentally friendliness of the materials. The review focuses on the current advances in the application of these materials, their efficiencies, degradation mechanisms, and recyclability in the context of sulfonamides photocatalytic degradation.


Assuntos
Grafite , Nanopartículas Metálicas , Compostos de Nitrogênio , Óxidos , Humanos , Sulfonamidas , Águas Residuárias , Sulfanilamida , Preparações Farmacêuticas , Catálise
5.
Int J Mol Sci ; 24(14)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37511354

RESUMO

This review mainly addresses applications of polymer/graphene nanocomposites in certain significant energy storage and conversion devices such as supercapacitors, Li-ion batteries, and fuel cells. Graphene has achieved an indispensable position among carbon nanomaterials owing to its inimitable structure and features. Graphene and its nanocomposites have been recognized for providing a high surface area, electron conductivity, capacitance, energy density, charge-discharge, cyclic stability, power conversion efficiency, and other advanced features in efficient energy devices. Furthermore, graphene-containing nanocomposites have superior microstructure, mechanical robustness, and heat constancy characteristics. Thus, this state-of-the-art article offers comprehensive coverage on designing, processing, and applying graphene-based nanoarchitectures in high-performance energy storage and conversion devices. Despite the essential features of graphene-derived nanocomposites, several challenges need to be overcome to attain advanced device performance.


Assuntos
Líquidos Corporais , Grafite , Nanocompostos , Carbono , Capacitância Elétrica
6.
Membranes (Basel) ; 12(7)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35877909

RESUMO

In this research, nanocomposite solid polymer electrolytes (NCSPEs) comprising methylcellulose/pectin (MC/PC) blend as host polymer, ammonium chloride (NH4Cl) as an ion source, and zinc oxide nanoparticles (ZnO NPs) as nanofillers were synthesized via a solution cast methodology. Techniques such as Fourier transform infrared (FTIR), electrical impedance spectroscopy (EIS), and linear sweep voltammetry (LSV) were employed to characterize the electrolyte. FTIR confirmed that the polymers, NH4Cl salt, and ZnO nanofiller interact with one another appreciably. EIS demonstrated the feasibility of achieving a conductivity of 3.13 × 10-4 Scm-1 for the optimum electrolyte at room temperature. Using the dielectric formalism technique, the dielectric properties, energy modulus, and relaxation time of NH4Cl in MC/PC/NH4Cl and MC/PC/NH4Cl/ZnO systems were determined. The contribution of chain dynamics and ion mobility was acknowledged by the presence of a peak in the imaginary portion of the modulus study. The LSV measurement yielded 4.55 V for the comparatively highest conductivity NCSPE.

7.
Membranes (Basel) ; 13(1)2022 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-36676834

RESUMO

To secure existing water resources is one of the imposing challenges to attain sustainability and ecofriendly world. Subsequently, several advanced technologies have been developed for water treatment. The most successful methodology considered so far is the development of water filtration membranes for desalination, ion permeation, and microbes handling. Various types of membranes have been industrialized including nanofiltration, microfiltration, reverse osmosis, and ultrafiltration membranes. Among polymeric nanocomposites, nanocarbon (fullerene, graphene, and carbon nanotubes)-reinforced nanomaterials have gained research attention owing to notable properties/applications. Here, fullerene has gained important stance amid carbonaceous nanofillers due to zero dimensionality, high surface areas, and exceptional physical properties such as optical, electrical, thermal, mechanical, and other characteristics. Accordingly, a very important application of polymer/fullerene C60 nanocomposites has been observed in the membrane sector. This review is basically focused on talented applications of polymer/fullerene nanocomposite membranes in water treatment. The polymer/fullerene nanostructures bring about numerous revolutions in the field of high-performance membranes because of better permeation, water flux, selectivity, and separation performance. The purpose of this pioneering review is to highlight and summarize current advances in the field of water purification/treatment using polymer and fullerene-based nanocomposite membranes. Particular emphasis is placed on the development of fullerene embedded into a variety of polymer membranes (Nafion, polysulfone, polyamide, polystyrene, etc.) and effects on the enhanced properties and performance of the resulting water treatment membranes. Polymer/fullerene nanocomposite membranes have been developed using solution casting, phase inversion, electrospinning, solid phase synthesis, and other facile methods. The structural diversity of polymer/fullerene nanocomposites facilitates membrane separation processes, especially for valuable or toxic metal ions, salts, and microorganisms. Current challenges and opportunities for future research have also been discussed. Future research on these innovative membrane materials may overwhelm design and performance-related challenging factors.

8.
Mater Sci Eng C Mater Biol Appl ; 73: 665-669, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28183658

RESUMO

The manganese doped zinc sulfide nanoparticles were synthesized by simple aqueous chemical reaction of manganese chloride, zinc acetate and thioacitamide in aqueous solution. Thioglycolic acid is used as capping agent for controlling the nanoparticle size. The main advantage of the ZnS:Mn nanoparticles of diameter ~2.73nm is that the sample is prepared by using non-toxic precursors in a cost effective and eco-friendly way. The structural, morphological and chemical composition of the nanoparticles have been investigated by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) with energy dispersion spectroscopy (EDS) and Fourier transform infrared (FTIR) spectroscopy. The nanosize of the prepared nanoparticles was elucidated by Scanning Electron Microscopy (SEM). FTIR result ensures that Thioglycolic acid is well bonded on the surface of ZnS:Mn NPs. The antifungal effects of Thioglycolic acid capped ZnS:Mn nanoparticles exhibited a potent antifungal activity against tested fungal strains, so deserving further investigation for clinical applications. The antifungal property of manganese doped zinc sulphide nanoparticles is attributed to the generation of reactive oxygen species due to the interaction of nanoparticles with water. Additionally, the presence of Zn and S in the zone of inhibition area leads to perturbation of fungi cell membranes resulting in growth inhibition.


Assuntos
Antifúngicos/farmacologia , Fungos/efeitos dos fármacos , Manganês/química , Nanopartículas/química , Semicondutores , Sulfetos/química , Tioglicolatos/farmacologia , Compostos de Zinco/química , Testes de Sensibilidade Microbiana , Nanopartículas/ultraestrutura , Espectrometria por Raios X , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
9.
Phys Med ; 32(12): 1615-1620, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27899269

RESUMO

Parathyroid hormone (PTH) has attracted considerable interest as a bone anabolic agent. PTH plays a central role in regulating calcium phosphate metabolism and its increases in production in response to low serum calcium levels. A continuous hypersecretion of PTH, as occurs in primary hyperparathyroidism, leads to bone resorption. In this study, the effect of different doses of parathyroid hormone (PTH) on bone mineral content (BMC) in rats was investigated by particle-induced X-ray emission (PIXE). This study will help in investigating further the toxicity of extremely high doses of PTH on BMC. For this study, PTH at doses of 15, 45, or 135µg/kg/day were applied to 9-month-old male and female Sprague Dawley (SD) rats. The concentrations of calcium (Ca), phosphorus (P), strontium (Sr), and zinc (Zn) were measured for bone treatment of PTH. From the results of the research, it was revealed that the biomechanical characteristics of the bone as well as the bone mass were enhanced after the treatment. It was further found that the concentrations of other elements also increased, excluding Zn. This research proved that PTH assists in the treatment of osteoporosis as revealed by the characteristics of different elements. PIXE can be used to determine the concentrations of bone mineral content.


Assuntos
Fêmur/efeitos dos fármacos , Fêmur/metabolismo , Hormônio Paratireóideo/farmacologia , Espectrometria por Raios X , Animais , Densidade Óssea/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Fêmur/fisiologia , Masculino , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...