Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 11349, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37443199

RESUMO

Tropical coral reefs, as prominent marine diversity hotspots, are in decline, and long-term studies help to improve understanding of the effects of global warming, sea-level rise, ocean acidification, deterioration of water quality, and disease. Here, we evaluated relative coral abundance and reef accretion rates over the past 9000 years in Belize barrier and atoll reefs, the largest reef system in the Atlantic Ocean. Acropora palmata and Orbicella spp. have been the most common corals. The abundance of competitive, fast-growing acroporids was constant over multi-millennial timescales. A decline in A. cervicornis abundance, however, and three centennial-scale gaps in A. palmata occurrence, suggest that the modern decline in acroporids was not unprecedented. Stress-tolerant corals predominate at the beginning of Holocene successions. Following the improvement of environmental conditions after inundation of the reef pedestal, their abundance has decreased. The abundance of weedy corals has increased during the Holocene underlining the importance of fecundity for the coral community. Reef-accretion rate, as calculated based on 76 new U-series age dates, has decreased over the Holocene and the mean value of 3.36 m kyr-1 is at the lower end of global reef growth compilations and predicted future rates of rise in sea level.


Assuntos
Antozoários , Animais , Belize , Concentração de Íons de Hidrogênio , Água do Mar , Recifes de Corais , Ecossistema
2.
Nature ; 458(7240): 881-4, 2009 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-19370032

RESUMO

Widespread evidence of a +4-6-m sea-level highstand during the last interglacial period (Marine Isotope Stage 5e) has led to warnings that modern ice sheets will deteriorate owing to global warming and initiate a rise of similar magnitude by ad 2100 (ref. 1). The rate of this projected rise is based on ice-sheet melting simulations and downplays discoveries of more rapid ice loss. Knowing the rate at which sea level reached its highstand during the last interglacial period is fundamental in assessing if such rapid ice-loss processes could lead to future catastrophic sea-level rise. The best direct record of sea level during this highstand comes from well-dated fossil reefs in stable areas. However, this record lacks both reef-crest development up to the full highstand elevation, as inferred from widespread intertidal indicators at +6 m, and a detailed chronology, owing to the difficulty of replicating U-series ages on submillennial timescales. Here we present a complete reef-crest sequence for the last interglacial highstand and its U-series chronology from the stable northeast Yucatán peninsula, Mexico. We find that reef development during the highstand was punctuated by reef-crest demise at +3 m and back-stepping to +6 m. The abrupt demise of the lower-reef crest, but continuous accretion between the lower-lagoonal unit and the upper-reef crest, allows us to infer that this back-stepping occurred on an ecological timescale and was triggered by a 2-3-m jump in sea level. Using strictly reliable (230)Th ages of corals from the upper-reef crest, and improved stratigraphic screening of coral ages from other stable sites, we constrain this jump to have occurred approximately 121 kyr ago and conclude that it supports an episode of ice-sheet instability during the terminal phase of the last interglacial period.


Assuntos
Antozoários/fisiologia , Efeito Estufa , Camada de Gelo , Água do Mar/análise , Animais , Fósseis , História Antiga , México
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA