Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 10(11)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-38002395

RESUMO

This study aimed to understand extracellular mechanical stimuli's effect on prostate cancer cells' metastatic progression within a three-dimensional (3D) bone-like microenvironment. In this study, a mechanical loading platform, EQUicycler, has been employed to create physiologically relevant static and cyclic mechanical stimuli to a prostate cancer cell (PC-3)-embedded 3D tissue matrix. Three mechanical stimuli conditions were applied: control (no loading), cyclic (1% strain at 1 Hz), and static mechanical stimuli (1% strain). The changes in prostate cancer cells' cytoskeletal reorganization, polarity (elongation index), proliferation, expression level of N-Cadherin (metastasis-associated gene), and migratory potential within the 3D collagen structures were assessed upon mechanical stimuli. The results have shown that static mechanical stimuli increased the metastasis progression factors, including cell elongation (p < 0.001), cellular F-actin accumulation (p < 0.001), actin polymerization (p < 0.001), N-Cadherin gene expression, and invasion capacity of PC-3 cells within a bone-like microenvironment compared to its cyclic and control loading counterparts. This study established a novel system for studying metastatic cancer cells within bone and enables the creation of biomimetic in vitro models for cancer research and mechanobiology.

3.
Cells ; 11(9)2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35563863

RESUMO

Glioblastoma (GBM) is a progressive and lethal brain cancer. Malignant control of actin and microtubule cytoskeletal mechanics facilitates two major GBM therapeutic resistance strategies-diffuse invasion and tumor microtube network formation. Actin and microtubule reorganization is controlled by Rho-GTPases, which exert their effects through downstream effector protein activation, including Rho-associated kinases (ROCK) 1 and 2 and mammalian diaphanous-related (mDia) formins (mDia1, 2, and 3). Precise spatial and temporal balancing of the activity between these effectors dictates cell shape, adhesion turnover, and motility. Using small molecules targeting mDia, we demonstrated that global agonism (IMM02) was superior to antagonism (SMIFH2) as anti-invasion strategies in GBM spheroids. Here, we use IDH-wild-type GBM patient-derived cell models and a novel semi-adherent in vitro system to investigate the relationship between ROCK and mDia in invasion and tumor microtube networks. IMM02-mediated mDia agonism disrupts invasion in GBM patient-derived spheroid models, in part by inducing mDia expression loss and tumor microtube network collapse. Pharmacological disruption of ROCK prevented invasive cell-body movement away from GBM spheres, yet induced ultralong, phenotypically abnormal tumor microtube formation. Simultaneously targeting mDia and ROCK did not enhance the anti-invasive/-tumor microtube effects of IMM02. Our data reveal that targeting mDia is a viable GBM anti-invasion/-tumor microtube networking strategy, while ROCK inhibition is contraindicated.


Assuntos
Forminas/metabolismo , Glioblastoma , Quinases Associadas a rho , Actinas/metabolismo , Animais , Citoesqueleto/metabolismo , Glioblastoma/metabolismo , Humanos , Mamíferos/metabolismo , Microtúbulos/metabolismo , Quinases Associadas a rho/metabolismo
5.
Cancers (Basel) ; 11(3)2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30897774

RESUMO

High-grade glioma (HGG, WHO Grade III⁻IV) accounts for the majority of adult primary malignant brain tumors. Failure of current therapies to target invasive glioma cells partly explains the minimal survival advantages: invasive tumors lack easily-defined surgical margins, and are inherently more chemo- and radioresistant. Much work centers upon Rho GTPase-mediated glioma invasion, yet downstream Rho effector roles are poorly understood and represent potential therapeutic targets. The roles for the mammalian Diaphanous (mDia)-related formin family of Rho effectors have emerged in invasive/metastatic disease. mDias assemble linear F-actin to promote protrusive cytoskeletal structures underlying tumor cell invasion. Small molecule mDia intramimic (IMM) agonists induced mDia functional activities including F-actin polymerization. mDia agonism inhibited polarized migration in Glioblastoma (WHO Grade IV) cells in three-dimensional (3D) in vitro and rat brain slice models. Here, we evaluate whether clinically-relevant high-grade glioma patient-derived neuro-sphere invasion is sensitive to formin agonism. Surgical HGG samples were dissociated, briefly grown as monolayers, and spontaneously formed non-adherent neuro-spheres. IMM treatment dramatically inhibited HGG patient neuro-sphere invasion, both at neuro-sphere embedding and mid-invasion assay, inducing an amoeboid morphology in neuro-sphere edge cells, while inhibiting actin- and tubulin-enriched tumor microtube formation. Thus, mDia agonism effectively disrupts multiple aspects of patient-derived HGG neuro-sphere invasion.

6.
Front Pharmacol ; 9: 520, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29875662

RESUMO

The inhibition of apoptosis, disruption of cellular microtubule dynamics, and over-activation of the epithelial mesenchymal transition (EMT), are involved in the progression, metastasis, and resistance of colorectal cancer (CRC) to chemotherapy. Therefore, the design of a molecule that can target these pathways could be an effective strategy to reverse CRC progression and metastasis. In this study, twelve novel silybin derivatives, HM015a-HM015k (15a-15k) and compound 17, were screened for cytotoxicity in CRC cell lines. Compounds HM015j and HM015k (15k and 15j) significantly decreased cell proliferation, inhibited colony formation, and produced cell cycle arrest in CRC cells. Furthermore, 15k significantly induced the formation of reactive oxygen species and apoptosis. It induced the cleavage of the intrinsic apoptotic protein (Bax p21) to its more efficacious fragment, p18. Compound 15k also inhibited tubulin expression and disrupted its structure. Compound 15k significantly decreased metastatic LOVO cell migration and invasion. Furthermore, 15k reversed mesenchymal morphology in HCT116 and LOVO cells. Additionally, 15k significantly inhibited the expression of the mesenchymal marker N-cadherin and upregulated the expression of the epithelial marker, E-cadherin. Compound 15k inhibited the expression of key proteins known to induce EMT (i.e., DVL3, ß-catenin, c-Myc) and upregulated the anti-metastatic protein, cyclin B1. Overall, in vitro, 15k significantly inhibited CRC progression and metastasis by inhibiting apoptosis, tubulin activity and the EMT pathways. Overall, these data suggest that compound 15k should be tested in vivo in a CRC animal model for further development.

7.
Front Pharmacol ; 9: 340, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29692731

RESUMO

The mammalian Diaphanous-related (mDia) formins are cytoskeletal regulators that assemble and, in some cases, bundle filamentous actin (F-actin), as well as stabilize microtubules. The development of small molecule antagonists and agonists that interrogate mDia formin function has allowed us to investigate the roles of formins in disease states. A small molecule inhibitor of FH2 domain (SMIFH2) inhibits mDia-dependent actin dynamics and abrogates tumor cell migration and cell division in vitro and ex vivo tissue explants. mDia formin activation with small molecule intramimics IMM01/02 and mDia2-DAD peptides inhibited glioblastoma motility and invasion in vitro and ex vivo rat brain slices. However, SMIFH2, IMMs, and mDia2 DAD efficacy in vivo remains largely unexplored and potential toxicity across a range of developmental phenotypes has not been thoroughly characterized. In this study, we performed an in vivo screen of early life-stage toxicity in Danio rerio zebrafish embryos 2 days post-fertilization (dpf) in response to SMIFH2, IMM01/02, and mDia2 DAD. SMIFH2 at concentrations ≥5-10 µM induced significant defects in developing zebrafish, including shorter body lengths, tail curvature and defective tail cellularity, craniofacial malformations, pericardial edema, absent and/or compromised vasculature function and flow, depressed heart rates and increased mortality. Conversely, IMM and mDia2 DAD peptides were minimally toxic at concentrations up to 10-20 and 50 µM, respectively. SMIFH2's therapeutic potential may therefore be limited by its substantial in vivo toxicity at functional concentrations. mDia formin agonism with IMMs and mDia2 DADs may therefore be a more effective and less toxic anti-invasive therapeutic approach.

8.
PLoS One ; 13(3): e0195278, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29596520

RESUMO

The tumor microenvironment (TME) promotes tumor cell invasion and metastasis. An important step in the shift to a pro-cancerous microenvironment is the transformation of normal stromal fibroblasts to carcinoma-associated fibroblasts (CAFs). CAFs are present in a majority of solid tumors and can directly promote tumor cell motility via cytokine, chemokine and growth factor secretion into the TME. The exact effects that the TME has upon cytoskeletal regulation in motile tumor cells remain enigmatic. The conserved formin family of cytoskeleton regulating proteins plays an essential role in the assembly and/or bundling of unbranched actin filaments. Mammalian Diaphanous-related formin 2 (mDia2/DIAPH3/Drf3/Dia) assembles a dynamic F-actin cytoskeleton that underlies tumor cell migration and invasion. We therefore sought to understand whether CAF-derived chemokines impact breast tumor cell motility through modification of the formin-assembled F-actin cytoskeleton. In MDA-MB-231 cells, conditioned media (CM) from WS19T CAFs, a human breast tumor-adjacent CAF line, significantly and robustly increased wound closure and invasion relative to normal human mammary fibroblast (HMF)-CM. WS19T-CM also promoted proteasome-mediated mDia2 degradation in MDA-MB-231 cells relative to control HMF-CM and WS21T CAF-CM, a breast CAF cell line that failed to promote robust MDA-MB-231 migration. Cytokine array analysis of CM identified up-regulated secreted factors in WS19T relative to control WS21T CM. We identified CXCL12 as a CM factor influencing loss of mDia2 protein while increasing MDA-MB-231 cell migration. Our data suggest a mechanism whereby CAFs promote tumor cell migration and invasion through CXCL12 secretion to regulate the mDia2-directed cytoskeleton in breast tumor cells.


Assuntos
Neoplasias da Mama/patologia , Fibroblastos Associados a Câncer/patologia , Proteínas de Transporte/antagonistas & inibidores , Movimento Celular , Citoesqueleto de Actina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias da Mama/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Meios de Cultivo Condicionados/farmacologia , Feminino , Forminas , Humanos , Transdução de Sinais , Células Tumorais Cultivadas , Microambiente Tumoral/efeitos dos fármacos , Cicatrização
9.
Biomed Res Int ; 2017: 8058307, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28243603

RESUMO

Traditional cancer treatments like radiotherapy and chemotherapy have drawbacks and are not selective for killing only cancer cells. Nonthermal atmospheric pressure plasmas with dielectric barrier discharge (DBD) can be applied to living cells and tissues and have emerged as novel tools for localized cancer therapy. The purpose of this study was to investigate the different effects caused by miniature DBD (mDBD) plasma to A549 lung cancer cells. In this study, A549 lung cancer cells cultured in 12 well plates were treated with mDBD plasma for specified treatment times to assess the changes in the size of the area of cell detachment, the viability of attached or detached cells, and cell migration. Furthermore, we investigated an innovative mDBD plasma-based therapy for localized treatment of lung cancer cells through apoptotic induction. Our results indicate that plasma treatment for 120 sec causes apoptotic cell death in 35.8% of cells, while mDBD plasma treatment for 60 sec, 30 sec, or 15 sec causes apoptotic cell death in 20.5%, 14.1%, and 6.3% of the cell population, respectively. Additionally, we observed reduced A549 cell migration in response to mDBD plasma treatment. Thus, mDBD plasma system can be a viable platform for localized lung cancer therapy.


Assuntos
Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Eletricidade , Neoplasias Pulmonares/patologia , Gases em Plasma/farmacologia , Células A549 , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão , Contagem de Células , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Humanos , Microscopia de Fluorescência , Fatores de Tempo
10.
Biochem Biophys Res Commun ; 484(2): 255-261, 2017 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-28115158

RESUMO

Morphological plasticity in response to environmental cues in migrating cancer cells requires F-actin cytoskeletal rearrangements. Conserved formin family proteins play critical roles in cell shape, tumor cell motility, invasion and metastasis, in part, through assembly of non-branched actin filaments. Diaphanous-related formin-2 (mDia2/Diaph3/Drf3/Dia) regulates mesenchymal-to-amoeboid morphological conversions and non-apoptotic blebbing in tumor cells by interacting with its inhibitor diaphanous-interacting protein (DIP), and disrupting cortical F-actin assembly and bundling. F-actin disruption is initiated by a CXCL12-dependent mechanism. Downstream CXCL12 signaling partners inducing mDia2-dependent amoeboid conversions remain enigmatic. We found in MDA-MB-231 tumor cells CXCL12 induces DIP and mDia2 interaction in blebs, and engages its receptor CXCR4 to induce RhoA-dependent blebbing. mDia2 and CXCR4 associate in blebs upon CXCL12 stimulation. Both CXCR4 and RhoA are required for CXCL12-induced blebbing. Neither CXCR7 nor other Rho GTPases that activate mDia2 are required for CXCL12-induced blebbing. The Rho Guanine Nucleotide Exchange Factor (GEF) Net1 is required for CXCL12-driven RhoA activation and subsequent blebbing. These results reveal CXCL12 signaling, through CXCR4, directs a Net1/RhoA/mDia-dependent signaling hub to drive cytoskeleton rearrangements to regulate morphological plasticity in tumor cells. These signaling hubs may be conserved during normal and cancer cells responding to chemotactic cues.


Assuntos
Proteínas de Transporte/metabolismo , Quimiocina CXCL12/metabolismo , Neoplasias/metabolismo , Receptores CXCR4/metabolismo , Transdução de Sinais , Linhagem Celular Tumoral , Forminas , Células HEK293 , Humanos , Neoplasias/patologia
11.
Biochem Biophys Res Commun ; 472(1): 33-9, 2016 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-26898799

RESUMO

Due to a lack of effective screening or prevention protocol for epithelial ovarian cancer (EOC), there is a critical unmet need to develop therapeutic interventions for EOC treatment. EOC metastasis is unique. Initial dissemination is not primarily hematogenous, yet is facilitated through shedding of primary tumor cells into the peritoneal fluid and accumulating ascites. Increasingly, isolated patient spheroids point to a clinical role for spheroids in EOC metastasis. EOC spheroids are highly invasive structures that disseminate upon peritoneal mesothelium, and visceral tissues including liver and omentum. Selection for this subset of chemoresistant EOC cells could influence disease progression and/or recurrence. Thus, targeting spheroid integrity/structure may improve the chemotherapeutic responsiveness of EOC. We discovered a critical role for mammalian Diaphanous (mDia)-related formin-2 in maintaining EOC spheroid structure. Both mDia2 and the related mDia1 regulate F-actin networks critical to maintain cell-cell contacts and the integrity of multi-cellular epithelial sheets. We investigated if mDia2 functional inhibition via a small molecule inhibitor SMIFH2 combined with chemotherapeutics, such as taxol and cisplatin, inhibits the viability of EOC monolayers and clinically relevant spheroids. SMIFH2-mediated mDia formin inhibition significantly reduced both ES2 and Skov3 EOC monolayer viability while spheroid viability was minimally impacted only at the highest concentrations. Combining either cisplatin or taxol with SMIFH2 did not significantly enhance the effects of either drug alone in ES2 monolayers, while Skov3 monolayers treated with taxol or cisplatin and SMIFH2 showed significant additive inhibition of viability. ES2 spheroids were highly responsive with clear additive anti-viability effects with dual taxol or cisplatin when combined with SMIFH2 treatments. While combined taxol with SMIFH2 in spheroids showed an additive effect relative to single treatments, Skov3 spheroids showed no additive effects from combined cisplatin and SMIFH2 treatments. Our data indicate that mDia formin inhibition combined with taxol to drive enhanced and/or additive anti-viability effects targeting 3D EOC structures, including ES2 and Skov3 spheroids. Combined mDia formin inhibition with cisplatin may be most effective in EOC spheroids where cisplatin sensitivity is retained at moderate levels, such as ES2 cells.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Proteínas de Transporte/antagonistas & inibidores , Neoplasias Epiteliais e Glandulares/tratamento farmacológico , Neoplasias Epiteliais e Glandulares/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Tionas/administração & dosagem , Uracila/análogos & derivados , Actinas/metabolismo , Carcinoma Epitelial do Ovário , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/administração & dosagem , Resistencia a Medicamentos Antineoplásicos , Sinergismo Farmacológico , Feminino , Forminas , Humanos , Neoplasias Epiteliais e Glandulares/patologia , Neoplasias Ovarianas/patologia , Paclitaxel/administração & dosagem , Esferoides Celulares , Uracila/administração & dosagem
12.
Mol Biol Cell ; 26(21): 3704-18, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26354425

RESUMO

The extensive invasive capacity of glioblastoma (GBM) makes it resistant to surgery, radiotherapy, and chemotherapy and thus makes it lethal. In vivo, GBM invasion is mediated by Rho GTPases through unidentified downstream effectors. Mammalian Diaphanous (mDia) family formins are Rho-directed effectors that regulate the F-actin cytoskeleton to support tumor cell motility. Historically, anti-invasion strategies focused upon mDia inhibition, whereas activation remained unexplored. The recent development of small molecules directly inhibiting or activating mDia-driven F-actin assembly that supports motility allows for exploration of their role in GBM. We used the formin inhibitor SMIFH2 and mDia agonists IMM-01/-02 and mDia2-DAD peptides, which disrupt autoinhibition, to examine the roles of mDia inactivation versus activation in GBM cell migration and invasion in vitro and in an ex vivo brain slice invasion model. Inhibiting mDia suppressed directional migration and spheroid invasion while preserving intrinsic random migration. mDia agonism abrogated both random intrinsic and directional migration and halted U87 spheroid invasion in ex vivo brain slices. Thus mDia agonism is a superior GBM anti-invasion strategy. We conclude that formin agonism impedes the most dangerous GBM component-tumor spread into surrounding healthy tissue. Formin activation impairs novel aspects of transformed cells and informs the development of anti-GBM invasion strategies.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/agonistas , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Animais , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Forminas , Glioblastoma/metabolismo , Glioblastoma/patologia , Complexo de Golgi/efeitos dos fármacos , Complexo de Golgi/metabolismo , Humanos , Invasividade Neoplásica , Ratos , Esferoides Celulares
13.
Mol Metab ; 4(3): 186-98, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25737954

RESUMO

OBJECTIVE: Association between prostate cancer and obesity remains controversial. Allelic deletions of PTEN, a tumor suppressor gene, are common in prostate cancer in men. Monoallelic Pten deletion in mice causes low prostatic intraepithelial neoplasia (mPIN). This study tested the effect of a hypercaloric diet on prostate cancer in Pten (+/-) mice. METHODS: 1-month old mice were fed a high-calorie diet deriving 45% calories from fat for 3 and 6 months before prostate was analyzed histologically and biochemically for mPIN progression. Because Pten (+/-) mice are protected against diet-induced insulin resistance, we tested the role of insulin on cell growth in RWPE-1 normal human prostatic epithelial cells with siRNA knockdown of PTEN. RESULTS: In addition to activating PI3 kinase/Akt and Ras/MAPkinase pathways, high-calorie diet causes neoplastic progression, angiogenesis, inflammation and epithelial-mesenchymal transition. It also elevates the expression of fatty acid synthase (FAS), a lipogenic gene commonly elevated in progressive cancer. SiRNA-mediated downregulation of PTEN demonstrates increased cell growth and motility, and soft agar clonicity in addition to elevation in FAS in response to insulin in RWPE-1 normal human prostatic cells. Downregulating FAS in addition to PTEN, blunted the proliferative effect of insulin (and IL-6) in RWPE-1 cells. CONCLUSION: High-calorie diet promotes prostate cancer progression in the genetically susceptible Pten haploinsufficient mouse while preserving insulin sensitivity. This appears to be partly due to increased inflammatory response to high-caloric intake in addition to increased ability of insulin to promote lipogenesis.

14.
PLoS One ; 9(2): e90371, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24587343

RESUMO

Multi-cellular spheroids are enriched in ascites of epithelial ovarian cancer (OvCa) patients. They represent an invasive and chemoresistant cellular population fundamental to metastatic dissemination. The molecular mechanisms triggering single cell invasive egress from spheroids remain enigmatic. mDia formins are Rho GTPase effectors that are key regulators of F-actin cytoskeletal dynamics. We hypothesized that mDia2-driven F-actin dynamics promote single cell invasive transitions in clinically relevant three-dimensional (3D) OvCa spheroids. The current study is a dissection of the contribution of the F-actin assembly factor mDia2 formin in invasive transitions and using a clinically relevant ovarian cancer spheroid model. We show that RhoA-directed mDia2 activity is required for tight spheroid organization, and enrichment of mDia2 in the invasive cellular protrusions of collagen-embedded OVCA429 spheroids. Depleting mDia2 in ES-2 spheroids enhanced invasive dissemination of single amoeboid-shaped cells. This contrasts with spheroids treated with control siRNA, where a mesenchymal invasion program predominated. Inhibition of another RhoA effector, ROCK, had no impact on ES-2 spheroid formation but dramatically inhibited spheroid invasion through induction of a highly elongated morphology. Concurrent inhibition of ROCK and mDia2 blocked single cell invasion from ES-2 spheroids more effectively than inhibition of either protein alone, indicating that invasive egress of amoeboid cells from mDia2-depleted spheroids is ROCK-dependent. Our findings indicate that multiple GTPase effectors must be suppressed in order to fully block invasive egress from ovarian cancer spheroids. Furthermore, tightly regulated interplay between ROCK and mDia2 signaling pathways dictates the invasive capacities and the type of invasion program utilized by motile spheroid-derived ovarian cancer cells. As loss of the gene encoding mDia2, DRF3, has been linked to cancer progression and metastasis, our results set the stage for understanding molecular mechanisms involved in mDia2-dependent egress of invasive cells from primary epithelial tumors.


Assuntos
Proteínas de Transporte/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Epiteliais e Glandulares/metabolismo , Neoplasias Ovarianas/metabolismo , Esferoides Celulares/metabolismo , Quinases Associadas a rho/metabolismo , Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Carcinoma Epitelial do Ovário , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Movimento Celular , Feminino , Forminas , Humanos , Neoplasias Epiteliais e Glandulares/genética , Neoplasias Epiteliais e Glandulares/patologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Esferoides Celulares/patologia , Quinases Associadas a rho/antagonistas & inibidores , Quinases Associadas a rho/genética , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo
15.
Acta Biomater ; 9(9): 8422-32, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23764803

RESUMO

Biocompatible nanoparticles possessing fluorescent properties offer attractive possibilities for multifunctional bioimaging and/or drug and gene delivery applications. Many of the limitations with current imaging systems center on the properties of the optical probes in relation to equipment technical capabilities. Here we introduce a novel high aspect ratio and highly crystalline europium-doped calcium phosphate nanowhisker produced using a simple microwave-assisted solution combustion synthesis method for use as a multifunctional bioimaging probe. X-ray diffraction confirmed the material phase as europium-doped hydroxyapatite. Fluorescence emission and excitation spectra and their corresponding peaks were identified using spectrofluorimetry and validated with fluorescence, confocal and multiphoton microscopy. The nanowhiskers were found to exhibit red and far red wavelength fluorescence under ultraviolet excitation with an optimal peak emission of 696 nm achieved with a 350 nm excitation. Relatively narrow emission bands were observed, which may permit their use in multicolor imaging applications. Confocal and multiphoton microscopy confirmed that the nanoparticles provide sufficient intensity to be utilized in imaging applications.


Assuntos
Fosfatos de Cálcio/síntese química , Cristalização/métodos , Európio/química , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Nanopartículas/química , Fosfatos de Cálcio/efeitos da radiação , Meios de Contraste/síntese química , Meios de Contraste/efeitos da radiação , Európio/efeitos da radiação , Temperatura Alta , Teste de Materiais , Micro-Ondas , Nanopartículas/ultraestrutura , Tamanho da Partícula , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
16.
PLoS One ; 7(9): e45085, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23024796

RESUMO

Tumor cells rely upon membrane pliancy to escape primary lesions and invade secondary metastatic sites. This process relies upon localized assembly and disassembly cycles of F-actin that support and underlie the plasma membrane. Dynamic actin generates both spear-like and bleb structures respectively characterizing mesenchymal and amoeboid motility programs utilized by metastatic cells in three-dimensional matrices. The molecular mechanism and physiological trigger(s) driving membrane plasticity are poorly understood. mDia formins are F-actin assembly factors directing membrane pliancy in motile cells. mDia2 is functionally coupled with its binding partner DIP, regulating cortical actin and inducing membrane blebbing in amoeboid cells. Here we show that mDia2 and DIP co-tether to nascent blebs and this linkage is required for bleb formation. DIP controls mesenchymal/amoeboid cell interconvertability, while CXCL12 induces assembly of mDia2:DIP complexes to bleb cortices in 3D matrices. These results demonstrate how DIP-directed mDia2-dependent F-actin dynamics regulate morphological plasticity in motile cancer cells.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Transporte/metabolismo , Técnicas de Cultura de Células , Movimento Celular , Proteínas Musculares/metabolismo , Neoplasias/metabolismo , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Quimiocina CXCL12/metabolismo , Forminas , Células HeLa , Humanos , Proteínas Musculares/genética , Neoplasias/genética , Transporte Proteico
17.
Biochim Biophys Acta ; 1803(2): 226-33, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19941910

RESUMO

Formins are a conserved family of proteins that play key roles in cytoskeletal remodeling. They nucleate and processively elongate non-branched actin filaments and also modulate microtubule dynamics. Despite their significant contributions to cell biology and development, few studies have directly implicated formins in disease pathogenesis. This review highlights the roles of formins in cell division, migration, immunity, and microvesicle formation in the context of human disease. In addition, we discuss the importance of controlling formin activity and protein expression to maintain cell homeostasis.


Assuntos
Doença , Proteínas Fetais , Proteínas dos Microfilamentos , Proteínas Nucleares , Sequência de Aminoácidos , Animais , Movimento Celular/fisiologia , Citocinese/fisiologia , Citoesqueleto/metabolismo , Modelos Animais de Doenças , Proteínas Fetais/genética , Proteínas Fetais/metabolismo , Forminas , Humanos , Sistema Imunitário/fisiologia , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Dados de Sequência Molecular , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Alinhamento de Sequência
18.
Cancer Res ; 67(16): 7565-71, 2007 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-17699759

RESUMO

Rho GTPase-effector mammalian diaphanous (mDia)-related formins assemble nonbranched actin filaments as part of cellular processes, including cell division, filopodia assembly, and intracellular trafficking. Whereas recent efforts have led to thorough characterization of formins in cytoskeletal remodeling and actin assembly in vitro, little is known about the role of mDia proteins in vivo. To fill this knowledge gap, the Drf1 gene, which encodes the canonical formin mDia1, was targeted by homologous recombination. Upon birth, Drf1+/- and Drf1-/- mice were developmentally and morphologically indistinguishable from their wild-type littermates. However, both Drf1+/- and Drf1-/- developed age-dependent myeloproliferative defects. The phenotype included splenomegaly, fibrotic and hypercellular bone marrow, extramedullary hematopoiesis in both spleen and liver, and the presence of immature myeloid progenitor cells with high nucleus-to-cytoplasm ratios. Analysis of cell surface markers showed an age-dependent increase in the percentage of CD11b+-activated and CD14+-activated monocytes/macrophages in both spleen and bone marrow in Drf1+/- and Drf1-/- animals. Analysis of the erythroid compartment showed a significant increase in the proportion of splenic cells in S phase and an expansion of erythroid precursors (TER-119+ and CD71+) in Drf1-targeted mice. Overall, knocking out mDia1 expression in mice leads to a phenotype similar to human myeloproliferative syndrome (MPS) and myelodysplastic syndromes (MDS). These observations suggest that defective DRF1 expression or mDia1 function may contribute to myeloid malignancies and point to mDia1 as an attractive therapeutic target in MDS and MPS.


Assuntos
Proteínas de Transporte/fisiologia , Síndromes Mielodisplásicas/genética , Transtornos Mieloproliferativos/genética , Animais , Células da Medula Óssea/fisiologia , Antígeno CD11b/biossíntese , Proteínas de Transporte/biossíntese , Proteínas de Transporte/genética , Forminas , Expressão Gênica , Marcação de Genes , Genes Supressores de Tumor , Homeostase/genética , Receptores de Lipopolissacarídeos/biossíntese , Camundongos , Camundongos Knockout , Síndromes Mielodisplásicas/metabolismo , Mielopoese/genética , Transtornos Mieloproliferativos/metabolismo
19.
J Biol Chem ; 282(34): 25152-8, 2007 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-17595162

RESUMO

Activated T cells rapidly assemble filamentous (F-) actin networks in response to ligation of the T cell receptor or upon interaction with adhesive stimuli in order to facilitate cell migration and the formation of the immune synapse. Branched filament assembly is crucial for this process and is dependent upon activation of the Arp2/3 complex by the actin nucleation-promoting factor Wiskott-Aldrich Syndrome protein (WASp). Genetic disruption of the WAS gene has been linked to hematopoietic malignancies and various cytopenias. Although the contributions of WASp and Arp2/3 to T cell responses are fairly well characterized, the role of the mammalian Diaphanous (mDia)-related formins, which both nucleate and processively elongate non-branched F-actin, has not been demonstrated. Here, we report the effects on T cell development and function following the knock out of the murine Drf1 gene encoding the canonical formin p140mDia1. Drf1(-/-) mice develop lymphopenia characterized by diminished T cell populations in lymphoid tissues. Consistent with a role for p140mDia1 in the regulation of the actin cytoskeleton, isolated Drf1(-/-) splenic T cells adhered poorly to extracellular matrix proteins and migration in response to chemotactic stimuli was completely abrogated. Both integrin and chemokine receptor expression was unaffected by Drf1(-/-) targeting. In response to proliferative stimuli, both thymic and splenic Drf1(-/-) T cells failed to proliferate; ERK1/2 activation was also diminished in activated Drf1(-/-) T cells. These data suggest a central role for p140mDia1 in vivo in dynamic cytoskeletal remodeling events driving normal T cell responses.


Assuntos
Proteínas de Transporte/fisiologia , Linfócitos T/metabolismo , Actinas/metabolismo , Animais , Proteínas de Transporte/genética , Adesão Celular , Movimento Celular , Citoesqueleto/metabolismo , Forminas , Humanos , Células Jurkat , Ativação Linfocitária , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Modelos Biológicos , Timo/citologia
20.
Curr Biol ; 17(7): 579-91, 2007 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-17398099

RESUMO

BACKGROUND: Mammalian Diaphanous (mDia)-related formins and the N-WASP-activated Arp2/3 complex initiate the assembly of filamentous actin. Dia-interacting protein (DIP) binds via its amino-terminal SH3 domain to the proline-rich formin homology 1 (FH1) domain of mDia1 and mDia2 and to the N-WASp proline-rich region. RESULTS: Here, we investigated an interaction between a conserved leucine-rich region (LRR) in DIP and the mDia FH2 domain that nucleates, processively elongates, and bundles actin filaments. DIP binding to mDia2 was regulated by the same Rho-GTPase-controlled autoinhibitory mechanism modulating formin-mediated actin assembly. DIP was previously shown to interact with and stimulate N-WASp-dependent branched filament assembly via Arp2/3. Despite direct binding to both mDia1 and mDia2 FH2 domains, DIP LRR inhibited only mDia2-dependent filament assembly and bundling in vitro. DIP expression interfered with filopodia formation, consistent with a role for mDia2 in assembly of these structures. After filopodia retraction into the cell body, DIP expression induced excessive nonapoptotic membrane blebbing, a physiological process involved in both cytokinesis and amoeboid cell movement. DIP-induced blebbing was dependent on mDia2 but did not require the activities of either mDia1 or Arp2/3. CONCLUSIONS: These observations point to a pivotal role for DIP in the control of nonbranched and branched actin-filament assembly that is mediated by Diaphanous-related formins and activators of Arp2/3, respectively. The ability of DIP to trigger blebbing also suggests a role for mDia2 in the assembly of cortical actin necessary for maintaining plasma-membrane integrity.


Assuntos
Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Transporte/metabolismo , Proteínas Musculares/metabolismo , Citoesqueleto de Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Sequência de Aminoácidos , Linhagem Celular , Membrana Celular/metabolismo , Forminas , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Dados de Sequência Molecular , Proteínas Musculares/química , Proteínas Musculares/genética , Mutação , Estrutura Terciária de Proteína , Pseudópodes/metabolismo , Pseudópodes/ultraestrutura , RNA Interferente Pequeno/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Proteína cdc42 de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...