Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Front Vet Sci ; 8: 652015, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34026891

RESUMO

When a rider maintains contact on the reins, rein tension will vary continuously in synchronicity with the horse's gait and stride. This continuous variation makes it difficult to isolate the rein tension variations that represent a rein tension signal, complicating interpretation of rein tension data from the perspective of horse-rider interaction. This study investigated (1) the characteristics of a rein tension signal and (2) horse response to a rein tension signal for backing, comparing pressure applied by a bit (bridle), or by a noseband (halter). Twenty Warmblood horses (10 young, 10 adult) wearing a rein tension meter were trained to step back in the aisle of a stable. The handler stood next to the horse's withers, applying tension on the reins until the horse stepped back. This was repeated eight times with the bridle and eight times with the halter. Data analysis was performed using mixed linear and logistic regression models. Horses displaying behaviors other than backing showed significantly increased response latency and rein tension. Inattentive behavior was significantly more common in the halter treatment and in young horses, compared with the bridle treatment and adult horses. Evasive behaviors with the head, neck, and mouth were significantly more common in the bridle treatment than in the halter treatment and the occurrence of head/neck/mouth behaviors increased with increasing rein tension and duration of the rein tension signal. When controlling for behavior, the horses responded significantly faster and to a lighter rein tension signal in the bridle treatment than in the halter treatment. By scrutinizing data on rein tension signals in relation to horse behavior and training exercise, more can be learnt about the horse's experience of the pressures applied and the timing of the release. This can assist in developing ways to evaluate rein tension in relation to correct use of negative reinforcement.

2.
Animals (Basel) ; 9(10)2019 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-31547540

RESUMO

In dressage, the performance of transitions between gaits and halts is an integral part of riding sessions. The study aimed to evaluate rein tension before, during and after the transitions between different gaits and the transitions into halts. The kinematic (inertial measurement units) data for the head and croup, and rein tension data, were collected (128 Hz) from six professional riders each riding three of their own horses, training levels varying from basic to advanced, during normal training sessions. The activities were categorised into gaits, halts and transitions based on video evaluation. The transitions were categorised as without (type 1) or with (type 2) intermediate steps that are not normally present in the gaits preceding or following the transition. The differences in the median rein tension before/during/after transitions, between the types and left/right reins were analysed in mixed models. The rein tension just before the transition was the strongest determinant of tension during the transition. The rein tension was slightly lower during upward transitions compared to downward transitions, reflecting the pattern of the preceding gait. Type 1 and 2 downward transitions were not different regarding rein tension. The left rein tension was lower than right rein tension. The rein tension associated with the transitions and halts varied substantially between riders and horses. The generally strong association of the gaits and their inherent biomechanics with rein tension should be taken into account when riding transitions and halts.

3.
Acta Vet Scand ; 57: 89, 2015 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-26715156

RESUMO

BACKGROUND: The use of tack (equipment such as saddles and reins) and especially of bits because of rein tension resulting in pressure in the mouth is questioned because of welfare concerns. We hypothesised that rein tension patterns in walk and trot reflect general gait kinematics, but are also determined by individual horse and rider effects. Six professional riders rode three familiar horses in walk and trot. Horses were equipped with rein tension meters logged by inertial measurement unit technique. Left and right rein tension data were synchronized with the gait. RESULTS: Stride split data (0-100 %) were analysed using mixed models technique to elucidate the left/right rein and stride percentage interaction, in relation to the exercises performed. In walk, rein tension was highest at hindlimb stance. Rein tension was highest in the suspension phase at trot, and lowest during the stance phase. In rising trot there was a significant difference between the two midstance phases, but not in sitting trot. When turning in trot there was a significant statistical association with the gait pattern with the tension being highest in the inside rein when the horse was on the outer fore-inner hindlimb diagonal. CONCLUSIONS: Substantial between-rider variation was demonstrated in walk and trot and between-horse variation in walk. Biphasic rein tensions patterns during the stride were found mainly in trot.


Assuntos
Marcha , Cavalos/fisiologia , Criação de Animais Domésticos/instrumentação , Criação de Animais Domésticos/normas , Bem-Estar do Animal , Animais , Fenômenos Biomecânicos , Modelos Estatísticos , Corrida , Suécia , Caminhada
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...