Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Nature ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977017

RESUMO

Highly pathogenic H5N1 avian influenza (HPAI H5N1) viruses occasionally infect, but typically do not transmit, in mammals. In the Spring of 2024, an unprecedented outbreak of HPAI H5N1 in bovine herds occurred in the US, with virus spread within and between herds, infections in poultry and cats, and spillover into humans, collectively indicating an increased public health risk1-4. Here, we characterized an HPAI H5N1 virus isolated from infected cow milk in mice and ferrets. Like other HPAI H5N1 viruses, the bovine H5N1 virus spread systemically, including to the mammary glands of both species; however, this tropism was also observed for an older HPAI H5N1 virus isolate. Importantly, bovine HPAI H5N1 virus bound to sialic acids expressed in human upper airways and inefficiently transmitted to exposed ferrets (one of four exposed ferrets seroconverted without virus detection). Bovine HPAI H5N1 virus thus possesses features that may facilitate infection and transmission in mammals.

3.
Sci Data ; 11(1): 328, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565538

RESUMO

Human infections caused by viral pathogens trigger a complex gamut of host responses that limit disease, resolve infection, generate immunity, and contribute to severe disease or death. Here, we present experimental methods and multi-omics data capture approaches representing the global host response to infection generated from 45 individual experiments involving human viruses from the Orthomyxoviridae, Filoviridae, Flaviviridae, and Coronaviridae families. Analogous experimental designs were implemented across human or mouse host model systems, longitudinal samples were collected over defined time courses, and global multi-omics data (transcriptomics, proteomics, metabolomics, and lipidomics) were acquired by microarray, RNA sequencing, or mass spectrometry analyses. For comparison, we have included transcriptomics datasets from cells treated with type I and type II human interferon. Raw multi-omics data and metadata were deposited in public repositories, and we provide a central location linking the raw data with experimental metadata and ready-to-use, quality-controlled, statistically processed multi-omics datasets not previously available in any public repository. This compendium of infection-induced host response data for reuse will be useful for those endeavouring to understand viral disease pathophysiology and network biology.


Assuntos
Multiômica , Viroses , Vírus , Animais , Humanos , Camundongos , Perfilação da Expressão Gênica/métodos , Metabolômica , Proteômica/métodos , Viroses/imunologia , Interações Hospedeiro-Patógeno
4.
Heliyon ; 9(3): e13795, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36915486

RESUMO

The detailed mechanisms of COVID-19 infection pathology remain poorly understood. To improve our understanding of SARS-CoV-2 pathology, we performed a multi-omics and correlative analysis of an immunologically naïve SARS-CoV-2 clinical cohort from blood plasma of uninfected controls, mild, and severe infections. Consistent with previous observations, severe patient populations showed an elevation of pulmonary surfactant levels. Intriguingly, mild patients showed a statistically significant elevation in the carnosine dipeptidase modifying enzyme (CNDP1). Mild and severe patient populations showed a strong elevation in the metabolite L-cystine (oxidized form of the amino acid cysteine) and enzymes with roles in glutathione metabolism. Neutrophil extracellular traps (NETs) were observed in both mild and severe populations, and NET formation was higher in severe vs. mild samples. Our correlative analysis suggests a potential protective role for CNDP1 in suppressing PSPB release from the pulmonary space whereas NET formation correlates with increased PSPB levels and disease severity. In our discussion we put forward a possible model where NET formation drives pulmonary occlusions and CNDP1 promotes antioxidation, pleiotropic immune responses, and vasodilation by accelerating histamine synthesis.

5.
Proc Natl Acad Sci U S A ; 118(27)2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34140350

RESUMO

The spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) plays a key role in viral infectivity. It is also the major antigen stimulating the host's protective immune response, specifically, the production of neutralizing antibodies. Recently, a new variant of SARS-CoV-2 possessing multiple mutations in the S protein, designated P.1, emerged in Brazil. Here, we characterized a P.1 variant isolated in Japan by using Syrian hamsters, a well-established small animal model for the study of SARS-CoV-2 disease (COVID-19). In hamsters, the variant showed replicative abilities and pathogenicity similar to those of early and contemporary strains (i.e., SARS-CoV-2 bearing aspartic acid [D] or glycine [G] at position 614 of the S protein). Sera and/or plasma from convalescent patients and BNT162b2 messenger RNA vaccinees showed comparable neutralization titers across the P.1 variant, S-614D, and S-614G strains. In contrast, the S-614D and S-614G strains were less well recognized than the P.1 variant by serum from a P.1-infected patient. Prior infection with S-614D or S-614G strains efficiently prevented the replication of the P.1 variant in the lower respiratory tract of hamsters upon reinfection. In addition, passive transfer of neutralizing antibodies to hamsters infected with the P.1 variant or the S-614G strain led to reduced virus replication in the lower respiratory tract. However, the effect was less pronounced against the P.1 variant than the S-614G strain. These findings suggest that the P.1 variant may be somewhat antigenically different from the early and contemporary strains of SARS-CoV-2.


Assuntos
COVID-19/virologia , SARS-CoV-2/fisiologia , SARS-CoV-2/patogenicidade , Replicação Viral , Animais , Anticorpos Neutralizantes , COVID-19/diagnóstico por imagem , COVID-19/patologia , Cricetinae , Humanos , Imunogenicidade da Vacina , Pulmão/patologia , Mesocricetus , Camundongos , Glicoproteína da Espícula de Coronavírus/genética , Microtomografia por Raio-X
6.
BMC Bioinformatics ; 22(1): 287, 2021 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-34051754

RESUMO

BACKGROUND: Representing biological networks as graphs is a powerful approach to reveal underlying patterns, signatures, and critical components from high-throughput biomolecular data. However, graphs do not natively capture the multi-way relationships present among genes and proteins in biological systems. Hypergraphs are generalizations of graphs that naturally model multi-way relationships and have shown promise in modeling systems such as protein complexes and metabolic reactions. In this paper we seek to understand how hypergraphs can more faithfully identify, and potentially predict, important genes based on complex relationships inferred from genomic expression data sets. RESULTS: We compiled a novel data set of transcriptional host response to pathogenic viral infections and formulated relationships between genes as a hypergraph where hyperedges represent significantly perturbed genes, and vertices represent individual biological samples with specific experimental conditions. We find that hypergraph betweenness centrality is a superior method for identification of genes important to viral response when compared with graph centrality. CONCLUSIONS: Our results demonstrate the utility of using hypergraphs to represent complex biological systems and highlight central important responses in common to a variety of highly pathogenic viruses.


Assuntos
Algoritmos , Modelos Biológicos , Genômica , Proteínas
7.
Front Cell Dev Biol ; 7: 200, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31616667

RESUMO

Despite high sequence similarity between pandemic and seasonal influenza viruses, there is extreme variation in host pathogenicity from one viral strain to the next. Identifying the underlying mechanisms of variability in pathogenicity is a critical task for understanding influenza virus infection and effective management of highly pathogenic influenza virus disease. We applied a network-based modeling approach to identify critical functions related to influenza virus pathogenicity using large transcriptomic and proteomic datasets from mice infected with six influenza virus strains or mutants. Our analysis revealed two pathogenicity-related gene expression clusters; these results were corroborated by matching proteomics data. We also identified parallel downstream processes that were altered during influenza pathogenesis. We found that network bottlenecks (nodes that bridge different network regions) were highly enriched in pathogenicity-related genes, while network hubs (highly connected network nodes) were significantly depleted in these genes. We confirmed that this trend persisted in a distinct virus: Severe Acute Respiratory Syndrome Coronavirus (SARS). The role of epidermal growth factor receptor (EGFR) in influenza pathogenesis, one of the bottleneck regulators with corroborating signals across transcript and protein expression data, was tested and validated in additional mouse infection experiments. We demonstrate that EGFR is important during influenza infection, but the role it plays changes for lethal versus non-lethal infections. Our results show that by using association networks, bottleneck genes that lack hub characteristics can be used to predict a gene's involvement in influenza virus pathogenicity. We also demonstrate the utility of employing multiple network approaches for analyzing host response data from viral infections.

8.
PLoS Negl Trop Dis ; 13(8): e0007654, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31369554

RESUMO

The 2013-2016 Ebola virus outbreak in West Africa was the largest and deadliest outbreak to date. Here we conducted a serological study to examine the antibody levels in survivors and the seroconversion in close contacts who took care of Ebola-infected individuals, but did not develop symptoms of Ebola virus disease. In March 2017, we collected blood samples from 481 individuals in Makeni, Sierra Leone: 214 survivors and 267 close contacts. Using commercial, quantitative ELISAs, we tested the plasma for IgG-specific antibodies against three major viral antigens: GP, the only viral glycoprotein expressed on the virus surface; NP, the most abundant viral protein; and VP40, a major structural protein of Zaire ebolavirus. We also determined neutralizing antibody titers. In the cohort of Ebola survivors, 97.7% of samples (209/214) had measurable antibody levels against GP, NP, and/or VP40. Of these positive samples, all but one had measurable neutralizing antibody titers against Ebola virus. For the close contacts, up to 12.7% (34/267) may have experienced a subclinical virus infection as indicated by detectable antibodies against GP. Further investigation is warranted to determine whether these close contacts truly experienced subclinical infections and whether these asymptomatic infections played a role in the dynamics of transmission.


Assuntos
Anticorpos Antivirais/sangue , Ebolavirus/imunologia , Doença pelo Vírus Ebola/imunologia , Sobreviventes , Adulto , Anticorpos Neutralizantes/sangue , Estudos Transversais , Feminino , Humanos , Imunoglobulina G/sangue , Masculino , Plasma/imunologia , Serra Leoa , Adulto Jovem
9.
Proc Natl Acad Sci U S A ; 115(5): E1012-E1021, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29339515

RESUMO

Convergent evolution dictates that diverse groups of viruses will target both similar and distinct host pathways to manipulate the immune response and improve infection. In this study, we sought to leverage this uneven viral antagonism to identify critical host factors that govern disease outcome. Utilizing a systems-based approach, we examined differential regulation of IFN-γ-dependent genes following infection with robust respiratory viruses including influenza viruses [A/influenza/Vietnam/1203/2004 (H5N1-VN1203) and A/influenza/California/04/2009 (H1N1-CA04)] and coronaviruses [severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome CoV (MERS-CoV)]. Categorizing by function, we observed down-regulation of gene expression associated with antigen presentation following both H5N1-VN1203 and MERS-CoV infection. Further examination revealed global down-regulation of antigen-presentation gene expression, which was confirmed by proteomics for both H5N1-VN1203 and MERS-CoV infection. Importantly, epigenetic analysis suggested that DNA methylation, rather than histone modification, plays a crucial role in MERS-CoV-mediated antagonism of antigen-presentation gene expression; in contrast, H5N1-VN1203 likely utilizes a combination of epigenetic mechanisms to target antigen presentation. Together, the results indicate a common mechanism utilized by H5N1-VN1203 and MERS-CoV to modulate antigen presentation and the host adaptive immune response.


Assuntos
Apresentação de Antígeno , Epigênese Genética , Virus da Influenza A Subtipo H5N1/patogenicidade , Coronavírus da Síndrome Respiratória do Oriente Médio/patogenicidade , Animais , Variação Antigênica , Linhagem Celular , Chlorocebus aethiops , Metilação de DNA , Cães , Regulação para Baixo , Histonas/química , Humanos , Células Madin Darby de Rim Canino , Complexo Principal de Histocompatibilidade , Mutação , Fases de Leitura Aberta , Proteômica , Células Vero
10.
Front Microbiol ; 9: 3307, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30713529

RESUMO

Influenza viruses cause seasonal epidemics and sporadic pandemics, and are a major burden on human health. To develop better countermeasures and improve influenza disease outcomes, a clearer understanding of influenza pathogenesis is necessary. Host genetic factors have emerged as potential regulators of human influenza disease susceptibility, and in the mouse model, genetic background has been clearly linked to influenza pathogenicity. Here, we show that C57BL/6J mice are significantly more susceptible to disease caused by a 2009 pandemic H1N1 virus, an H7N9 virus, and a highly pathogenic H5N1 influenza virus compared to the closely related substrain, C57BL/6NJ. Mechanistically, influenza virus infection in C57BL/6J mice results in earlier presentation of edema, increased immune cell infiltration, higher levels of inflammatory cytokines, greater tissue damage, and delayed activation of regenerative processes in infected lung tissues compared to C57BL/6NJ mice. These differences are not dependent on virus replication levels. Six genes with known coding region differences between C57BL/6J and C57BL/6NJ strains exhibit increased transcript levels in influenza virus-infected mouse lungs, suggesting potential contributions to regulation of disease susceptibility. This work uncovers a previously unappreciated difference in disease susceptibility between the closely related C57BL/6J and C57BL/6NJ mice, which may be exploited in future studies to identify host factors and/or specific genetic elements that regulate host-dependent inflammatory mechanisms involved in influenza virus pathogenicity.

11.
Cell Host Microbe ; 22(6): 817-829.e8, 2017 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-29154144

RESUMO

The pathogenesis of human Ebola virus disease (EVD) is complex. EVD is characterized by high levels of virus replication and dissemination, dysregulated immune responses, extensive virus- and host-mediated tissue damage, and disordered coagulation. To clarify how host responses contribute to EVD pathophysiology, we performed multi-platform 'omics analysis of peripheral blood mononuclear cells and plasma from EVD patients. Our results indicate that EVD molecular signatures overlap with those of sepsis, imply that pancreatic enzymes contribute to tissue damage in fatal EVD, and suggest that Ebola virus infection may induce aberrant neutrophils whose activity could explain hallmarks of fatal EVD. Moreover, integrated biomarker prediction identified putative biomarkers from different data platforms that differentiated survivors and fatalities early after infection. This work reveals insight into EVD pathogenesis, suggests an effective approach for biomarker identification, and provides an important community resource for further analysis of human EVD severity.


Assuntos
Proteínas Sanguíneas/análise , Perfilação da Expressão Gênica , Doença pelo Vírus Ebola/patologia , Doença pelo Vírus Ebola/fisiopatologia , Interações Hospedeiro-Patógeno , Proteoma/análise , Humanos , Leucócitos Mononucleares/química , Plasma/química
13.
Analyst ; 142(3): 442-448, 2017 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-28091625

RESUMO

The continued emergence and spread of infectious agents is of great concern, and systems biology approaches to infectious disease research can advance our understanding of host-pathogen relationships and facilitate the development of new therapies and vaccines. Molecular characterization of infectious samples outside of appropriate biosafety containment can take place only subsequent to pathogen inactivation. Herein, we describe a modified Folch extraction using chloroform/methanol that facilitates the molecular characterization of infectious samples by enabling simultaneous pathogen inactivation and extraction of proteins, metabolites, and lipids for subsequent mass spectrometry-based multi-omics measurements. This single-sample metabolite, protein and lipid extraction (MPLEx) method resulted in complete inactivation of clinically important bacterial and viral pathogens with exposed lipid membranes, including Yersinia pestis, Salmonella Typhimurium, and Campylobacter jejuni in pure culture, and Yersinia pestis, Campylobacter jejuni, and West Nile, MERS-CoV, Ebola, and influenza H7N9 viruses in infection studies. In addition, >99% inactivation, which increased with solvent exposure time, was also observed for pathogens without exposed lipid membranes including community-associated methicillin-resistant Staphylococcus aureus, Clostridium difficile spores and vegetative cells, and adenovirus type 5. The overall pipeline of inactivation and subsequent proteomic, metabolomic, and lipidomic analyses was evaluated using a human epithelial lung cell line infected with wild-type and mutant influenza H7N9 viruses, thereby demonstrating that MPLEx yields biomaterial of sufficient quality for subsequent multi-omics analyses. Based on these experimental results, we believe that MPLEx will facilitate systems biology studies of infectious samples by enabling simultaneous pathogen inactivation and multi-omics measurements from a single specimen with high success for pathogens with exposed lipid membranes.


Assuntos
Bactérias/isolamento & purificação , Lipídeos/análise , Metabolômica , Proteômica , Vírus/isolamento & purificação , Linhagem Celular , Células Epiteliais , Humanos , Espectrometria de Massas , Proteínas , Inativação de Vírus
14.
BMC Syst Biol ; 10(1): 93, 2016 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-27663205

RESUMO

BACKGROUND: The complex interplay between viral replication and host immune response during infection remains poorly understood. While many viruses are known to employ anti-immune strategies to facilitate their replication, highly pathogenic virus infections can also cause an excessive immune response that exacerbates, rather than reduces pathogenicity. To investigate this dichotomy in severe acute respiratory syndrome coronavirus (SARS-CoV), we developed a transcriptional network model of SARS-CoV infection in mice and used the model to prioritize candidate regulatory targets for further investigation. RESULTS: We validated our predictions in 18 different knockout (KO) mouse strains, showing that network topology provides significant predictive power to identify genes that are important for viral infection. We identified a novel player in the immune response to virus infection, Kepi, an inhibitory subunit of the protein phosphatase 1 (PP1) complex, which protects against SARS-CoV pathogenesis. We also found that receptors for the proinflammatory cytokine tumor necrosis factor alpha (TNFα) promote pathogenesis, presumably through excessive inflammation. CONCLUSIONS: The current study provides validation of network modeling approaches for identifying important players in virus infection pathogenesis, and a step forward in understanding the host response to an important infectious disease. The results presented here suggest the role of Kepi in the host response to SARS-CoV, as well as inflammatory activity driving pathogenesis through TNFα signaling in SARS-CoV infections. Though we have reported the utility of this approach in bacterial and cell culture studies previously, this is the first comprehensive study to confirm that network topology can be used to predict phenotypes in mice with experimental validation.

15.
PLoS Comput Biol ; 12(7): e1005013, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27403523

RESUMO

Mammalian host response to pathogenic infections is controlled by a complex regulatory network connecting regulatory proteins such as transcription factors and signaling proteins to target genes. An important challenge in infectious disease research is to understand molecular similarities and differences in mammalian host response to diverse sets of pathogens. Recently, systems biology studies have produced rich collections of omic profiles measuring host response to infectious agents such as influenza viruses at multiple levels. To gain a comprehensive understanding of the regulatory network driving host response to multiple infectious agents, we integrated host transcriptomes and proteomes using a network-based approach. Our approach combines expression-based regulatory network inference, structured-sparsity based regression, and network information flow to infer putative physical regulatory programs for expression modules. We applied our approach to identify regulatory networks, modules and subnetworks that drive host response to multiple influenza infections. The inferred regulatory network and modules are significantly enriched for known pathways of immune response and implicate apoptosis, splicing, and interferon signaling processes in the differential response of viral infections of different pathogenicities. We used the learned network to prioritize regulators and study virus and time-point specific networks. RNAi-based knockdown of predicted regulators had significant impact on viral replication and include several previously unknown regulators. Taken together, our integrated analysis identified novel module level patterns that capture strain and pathogenicity-specific patterns of expression and helped identify important regulators of host response to influenza infection.


Assuntos
Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes/genética , Interações Hospedeiro-Patógeno/genética , Proteoma/genética , Proteômica/métodos , Transcriptoma/genética , Animais , Humanos , Influenza Humana/genética , Camundongos , Modelos Biológicos , Biologia de Sistemas
16.
J Infect Dis ; 214(suppl 3): S142-S144, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27279525

RESUMO

The West African outbreak of Ebola virus (EBOV) is largely contained, but sporadic new cases continue to emerge. To assess the potential contribution of fomites to human infections with EBOV, we tested EBOV stability in human blood spotted onto Sierra Leonean banknotes and in syringe needles under hospital and environmental conditions. Under some of these conditions, EBOV remained infectious for >30 days, indicating that EBOV-contaminated items may pose a serious risk to humans.


Assuntos
Surtos de Doenças , Ebolavirus/fisiologia , Fômites/virologia , Doença pelo Vírus Ebola/epidemiologia , Meio Ambiente , Microbiologia Ambiental , Doença pelo Vírus Ebola/virologia , Hospitais , Humanos , Modelos Lineares , Viabilidade Microbiana
17.
Cell Host Microbe ; 19(2): 254-66, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26867183

RESUMO

Pandemic influenza viruses modulate proinflammatory responses that can lead to immunopathogenesis. We present an extensive and systematic profiling of lipids, metabolites, and proteins in respiratory compartments of ferrets infected with either 1918 or 2009 human pandemic H1N1 influenza viruses. Integrative analysis of high-throughput omics data with virologic and histopathologic data uncovered relationships between host responses and phenotypic outcomes of viral infection. Proinflammatory lipid precursors in the trachea following 1918 infection correlated with severe tracheal lesions. Using an algorithm to infer cell quantity changes from gene expression data, we found enrichment of distinct T cell subpopulations in the trachea. There was also a predicted increase in inflammatory monocytes in the lung of 1918 virus-infected animals that was sustained throughout infection. This study presents a unique resource to the influenza research community and demonstrates the utility of an integrative systems approach for characterization of lipid metabolism alterations underlying respiratory responses to viruses.


Assuntos
Vírus da Influenza A Subtipo H1N1/fisiologia , Influenza Humana/metabolismo , Metabolismo dos Lipídeos , Animais , Modelos Animais de Doenças , Furões , Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Influenza Humana/epidemiologia , Influenza Humana/genética , Influenza Humana/patologia , Lipídeos/química , Pulmão/metabolismo , Pulmão/patologia , Pulmão/virologia , Metabolômica
18.
Bioinformatics ; 32(10): 1509-17, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26801959

RESUMO

MOTIVATION: Identifying the shared and pathogen-specific components of host transcriptional regulatory programs is important for understanding the principles of regulation of immune response. Recent efforts in systems biology studies of infectious diseases have resulted in a large collection of datasets measuring host transcriptional response to various pathogens. Computational methods to identify and compare gene expression modules across different infections offer a powerful way to identify strain-specific and shared components of the regulatory program. An important challenge is to identify statistically robust gene expression modules as well as to reliably detect genes that change their module memberships between infections. RESULTS: We present MULCCH (MULti-task spectral Consensus Clustering for Hierarchically related tasks), a consensus extension of a multi-task clustering algorithm to infer high-confidence strain-specific host response modules under infections from multiple virus strains. On simulated data, MULCCH more accurately identifies genes exhibiting pathogen-specific patterns compared to non-consensus and nonmulti-task clustering approaches. Application of MULCCH to mammalian transcriptional response to a panel of influenza viruses showed that our method identifies clusters with greater coherence compared to non-consensus methods. Further, MULCCH derived clusters are enriched for several immune system-related processes and regulators. In summary, MULCCH provides a reliable module-based approach to identify molecular pathways and gene sets characterizing commonality and specificity of host response to viruses of different pathogenicities. AVAILABILITY AND IMPLEMENTATION: The source code is available at https://bitbucket.org/roygroup/mulcch CONTACT: sroy@biostat.wisc.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Genoma , Transcriptoma , Algoritmos , Animais , Análise por Conglomerados , Biologia Computacional , Consenso , Perfilação da Expressão Gênica , Redes Reguladoras de Genes
19.
PLoS Pathog ; 11(6): e1004856, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26046528

RESUMO

Influenza viruses present major challenges to public health, evident by the 2009 influenza pandemic. Highly pathogenic influenza virus infections generally coincide with early, high levels of inflammatory cytokines that some studies have suggested may be regulated in a strain-dependent manner. However, a comprehensive characterization of the complex dynamics of the inflammatory response induced by virulent influenza strains is lacking. Here, we applied gene co-expression and nonlinear regression analysis to time-course, microarray data developed from influenza-infected mouse lung to create mathematical models of the host inflammatory response. We found that the dynamics of inflammation-associated gene expression are regulated by an ultrasensitive-like mechanism in which low levels of virus induce minimal gene expression but expression is strongly induced once a threshold virus titer is exceeded. Cytokine assays confirmed that the production of several key inflammatory cytokines, such as interleukin 6 and monocyte chemotactic protein 1, exhibit ultrasensitive behavior. A systematic exploration of the pathways regulating the inflammatory-associated gene response suggests that the molecular origins of this ultrasensitive response mechanism lie within the branch of the Toll-like receptor pathway that regulates STAT1 phosphorylation. This study provides the first evidence of an ultrasensitive mechanism regulating influenza virus-induced inflammation in whole lungs and provides insight into how different virus strains can induce distinct temporal inflammation response profiles. The approach developed here should facilitate the construction of gene regulatory models of other infectious diseases.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Infecções por Orthomyxoviridae/imunologia , Animais , Western Blotting , Feminino , Citometria de Fluxo , Inflamação/genética , Inflamação/imunologia , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H1N1/patogenicidade , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência com Séries de Oligonucleotídeos , Infecções por Orthomyxoviridae/genética , Transcriptoma , Virulência
20.
Nat Rev Microbiol ; 13(1): 28-41, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25417656

RESUMO

Influenza A viral ribonucleoprotein (vRNP) complexes comprise the eight genomic negative-sense RNAs, each of which is bound to multiple copies of the vRNP and a trimeric viral polymerase complex. The influenza virus life cycle centres on the vRNPs, which in turn rely on host cellular processes to carry out functions that are necessary for the successful completion of the virus life cycle. In this Review, we discuss our current knowledge about vRNP trafficking within host cells and the function of these complexes in the context of the virus life cycle, highlighting how structure contributes to function and the crucial interactions with host cell pathways, as well as on the information gaps that remain. An improved understanding of how vRNPs use host cell pathways is essential to identify mechanisms of virus pathogenicity, host adaptation and, ultimately, new targets for antiviral intervention.


Assuntos
Vírus da Influenza A , Ribonucleoproteínas , Proteínas Virais , Interações Hospedeiro-Patógeno , Humanos , Influenza Humana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...