Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 258(Pt 1): 128793, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38134993

RESUMO

In this work, Tamarindus indica (T. indica)-loaded crosslinked poly(methyl methacrylate) (PMMA)/cellulose acetate (CA)/poly(ethylene oxide) (PEO) electrospun nanofibers were designed and fabricated for wound healing applications. T. indica is a plant extract that possesses antidiabetic, antimicrobial, antioxidant, antimalarial and wound healing properties. T. indica leaves extract of different concentrations were blended with a tuned composition of a matrix comprised of PMMA (10 %), CA (2 %) and PEO (1.5 %), and were electrospun to form smooth, dense and continuous nanofibers as illustrated by SEM investigation. In vitro evaluation of T. indica-loaded nanofibers on normal human skin fibroblasts (HBF4) revealed a high compatibility and low cytotoxicity. T. indica-loaded nanofibers significantly increased the healing activity of scratched HBF4 cells, as compared to the free plant extract, and the healing activity was significantly enhanced upon increasing the plant extract concentration. Moreover, T. indica-loaded nanofibers demonstrated significant antimicrobial activity in vitro against the tested microbes. In vivo, nanofibers resulted in a superior wound healing efficiency compared to the control untreated animals. Hence, engineered nanofibers loaded with potent phytochemicals could be exploited as an effective biocompatible and eco-friendly antimicrobial biomaterials and wound healing composites.


Assuntos
Anti-Infecciosos , Celulose/análogos & derivados , Nanofibras , Tamarindus , Animais , Humanos , Polimetil Metacrilato/farmacologia , Nanofibras/química , Cicatrização , Anti-Infecciosos/farmacologia , Extratos Vegetais/química , Antibacterianos/farmacologia
2.
Int J Pharm ; 647: 123549, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37890645

RESUMO

Exploitation of nanocarriers provides a compartment for enclosing drugs to protect them from degradation and potentiate their therapeutic efficiency. In the current study, amitriptyline- and liraglutide-loaded proniosomes were constructed for management of diabetic neuropathy, a serious complication associated with diabetes, that triggers spontaneous pain in patients and results in impaired quality of life. The developed therapeutic proniosomes were extensively characterized via dynamic light scattering, scanning electron microscopy, transmission electron microscopy, and Fourier transform-infrared spectroscopy. High entrapment efficiency could be attained for both drugs in the proniosomes, and the reconstituted amitriptyline- and liraglutide-loaded niosomes possessed spherical morphology and particle sizes of 585.3 nm and 864.4 nm, respectively. In a diabetic neuropathy rat model, oral administration of the developed amitriptyline- and liraglutide-loaded proniosomes significantly controlled blood glucose levels, reduced neuropathic pain, oxidative stress and inflammatory markers, and improved histological structure of the sciatic nerve as compared to the oral and subcutaneous administration of amitriptyline and liraglutide, respectively. Loading of the tricyclic antidepressant amitriptyline and the antidiabetic peptide liraglutide into proniosomes resulted in exceptional control over hyperglycemia and neuropathic pain, and thus could provide an auspicious delivery system for management of neuropathic pain and control of blood glucose levels.


Assuntos
Diabetes Mellitus , Neuropatias Diabéticas , Hiperglicemia , Neuralgia , Humanos , Ratos , Animais , Amitriptilina , Neuropatias Diabéticas/tratamento farmacológico , Neuropatias Diabéticas/complicações , Liraglutida/uso terapêutico , Glicemia , Qualidade de Vida , Neuralgia/tratamento farmacológico , Neuralgia/complicações , Lipossomos/química , Hiperglicemia/tratamento farmacológico , Diabetes Mellitus/tratamento farmacológico
3.
Methods ; 218: 133-140, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37595853

RESUMO

Exploitation of machine learning in predicting performance of nanomaterials is a rapidly growing dynamic area of research. For instance, incorporation of therapeutic cargoes into nanovesicles (i.e., entrapment efficiency) is one of the critical parameters that ensures proper entrapment of drugs in the developed nanosystems. Several factors affect the entrapment efficiency of drugs and thus multiple assessments are required to ensure drug retention, and to reduce cost and time. Supervised machine learning can allow for the construction of algorithms that can mine data available from earlier studies to predict performance of specific types of nanoparticles. Comparative studies that utilize multiple regression algorithms to predict entrapment efficiency in nanomaterials are scarce. Herein, we report on a detailed methodology for prediction of entrapment efficiency in nanomaterials (e.g., niosomes) using different regression algorithms (i.e., CatBoost, linear regression, support vector regression and artificial neural network) to select the model that demonstrates the best performance for estimation of entrapment efficiency. The study concluded that CatBoost algorithm demonstrated the best performance with maximum R2 score (0.98) and mean square error (< 10-4). Among the various parameters that possess a role in entrapment efficiency of drugs into niosomes, the results obtained from CatBoost model revealed that the drug:lipid ratio is the major contributing factor affecting entrapment efficiency, followed by the lipid:surfactant molar ratio. Hence, supervised machine learning may be applied for future selection of the components of niosomes that achieve high entrapment efficiency of drugs while minimizing experimental procedures and cost.


Assuntos
Lipossomos , Nanoestruturas , Aprendizado de Máquina , Algoritmos , Lipídeos
4.
Int J Pharm ; 642: 123161, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37379891

RESUMO

Morphologic design of nanomaterials for a diversity of biomedical applications is of increasing interest. The aim of the current study is to construct therapeutic gold nanoparticles of different morphologies and investigate their effect on ocular retention and intraocular pressure in a glaucoma rabbit model. Poly(lactic-co-glycolic acid) (PLGA)-coated nanorods and nanospheres have been synthesized and loaded with carbonic anhydrase inhibitor (CAI), and characterized in vitro for their size, zeta potential and encapsulation efficiency. Nanosized PLGA-coated gold nanoparticles of both morphologies demonstrated high entrapment efficiency (˃ 98%) for the synthesized CAI and the encapsulation of the drug into the developed nanoparticles was confirmed via Fourier transform-infrared spectroscopy. In vivo studies revealed a significant reduction in intraocular pressure upon instillation of drug-loaded nanogold formulations compared to the marketed eye drops. Spherical nanogolds exhibited a superior efficacy compared to the rod-shaped counterparts, probably due to the enhanced ocular retention of spherical nanogolds within collagen fibers of the stroma, as illustrated by transmission electron microscopy imaging. Normal histological appearance was observed for the cornea and retina of the eyes treated with spherical drug-loaded nanogolds. Hence, incorporation of a molecularly-designed CAI into nanogold of tailored morphology may provide a promising strategy for management of glaucoma.


Assuntos
Glaucoma , Nanopartículas Metálicas , Nanopartículas , Animais , Coelhos , Pressão Intraocular , Inibidores da Anidrase Carbônica/farmacologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ouro/uso terapêutico , Glaucoma/tratamento farmacológico , Nanopartículas/química , Córnea , Portadores de Fármacos/química , Tamanho da Partícula
5.
Int J Pharm ; 631: 122537, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36572260

RESUMO

Overexpression of two carbonic anhydrase (CA) isoforms, CA IX and XII, in several hypoxic solid tumors provides an extracellular hypoxic microenvironment, interferes with extra- and intracellular pH regulation, thus favoring hypoxic tumor cell survival, proliferation and metastasis. In the current study, a selective inhibitor for human CA isoforms IX and XII (isatin-bearing sulfonamide, WEG-104), was incorporated into nanosized spherical niosomes at high encapsulation efficiency to allow for an enhanced and sustained antitumor activity. In vivo, administration of WEG-104 that is either free (10 mg/kg) or loaded into niosomes (5 mg/kg) into a mice model of Ehrlich ascites solid tumor resulted in comparable efficacy in terms of reduction of tumor weight and volume. Administration of WEG-104-loaded niosomes (10 mg/kg) exhibited superior antitumor activity compared to the free drug, evidenced by reduced tumor weight and volume, marked reduction in the activity of CA IX and XII, and suppression of HIF-1α and MMP-2. Moreover, prominent increase of caspase 3 and pronounced decrease in VEGF immune expression were observed in the treated animals. Hence, loading of molecularly designed compounds that targets CAs in hypoxic solid tumors into nanosized delivery systems provided an auspicious strategy for limiting solid tumor progression and malignancy.


Assuntos
Anidrases Carbônicas , Neoplasias , Camundongos , Animais , Humanos , Inibidores da Anidrase Carbônica/farmacologia , Lipossomos/uso terapêutico , Neoplasias/tratamento farmacológico , Antígenos de Neoplasias , Anidrases Carbônicas/metabolismo , Anidrases Carbônicas/uso terapêutico , Hipóxia/tratamento farmacológico , Microambiente Tumoral
6.
Nanoscale ; 14(30): 10738-10749, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35866631

RESUMO

Hemorrhage is a prime cause of death in civilian and military traumatic injuries, whereby a significant proportion of death and complications occur prior to paramedic arrival and hospital resuscitation. Hence, it is crucial to develop hemostatic materials that are able to be applied by simple processes and allow control over bleeding by inducing rapid hemostasis, non-invasively, until subjects receive necessary medical care. This tutorial review discusses recent advances in synthesis and fabrication of degradable hemostatic nanomaterials and nanocomposites. Control of assembly and fine-tuning of composition of absorbable (i.e., degradable) hemostatic supramolecular structures and nanoconstructs have afforded the development of smart devices and scaffolds capable of efficiently controlling bleeding while degrading over time, thereby reducing surgical operation times and hospitalization duration. The nanoconstructs that are highlighted have demonstrated hemostatic efficiency pre-clinically in animal models, while also sharing characteristics of degradability, bioabsorbability and presence of nano-assemblies within their compositions.


Assuntos
Hemostáticos , Animais , Hemorragia/terapia , Hemostasia , Técnicas Hemostáticas/efeitos adversos , Hemostáticos/farmacologia , Humanos
7.
Pharmaceutics ; 13(10)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34683971

RESUMO

Pulmonary administration provides a useful alternative to oral and invasive routes of administration while enhancing and prolonging the accumulation of drugs into the lungs and reducing systemic drug exposure. In this study, chloroquine, as a model drug, was loaded into niosomes for potential pulmonary administration either via dry powder inhalation or intratracheally. Chloroquine-loaded niosomes have been prepared and extensively characterized. Furthermore, drug-loaded niosomes were lyophilized and their flowing properties were evaluated by measuring the angle of repose, Carr's index, and Hausner ratio. The developed niosomes demonstrated a nanosized (100-150 nm) spherical morphology and chloroquine entrapment efficiency of ca. 24.5%. The FT-IR results indicated the incorporation of chloroquine into the niosomes, whereas in vitro release studies demonstrated an extended-release profile of the drug-loaded niosomes compared to the free drug. Lyophilized niosomes exhibited poor flowability that was not sufficiently improved after the addition of lactose or when cryoprotectants were exploited throughout the lyophilization process. In vivo, intratracheal administration of chloroquine-loaded niosomes in rats resulted in a drug concentration in the blood that was 10-fold lower than the oral administration of the free drug. Biomarkers of kidney and liver functions (i.e., creatinine, urea, AST, and ALT) following pulmonary administration of the drug-loaded nanoparticles were of similar levels to those of the control untreated animals. Hence, the use of a dry powder inhaler for administration of lyophilized niosomes is not recommended, whereas intratracheal administration might provide a promising strategy for pulmonary administration of niosomal dispersions while minimizing systemic drug exposure and adverse reactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...