Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
R Soc Open Sci ; 10(11): 230910, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38026015

RESUMO

A coordination polymer of linear trimeric cobalt units and melamine has been synthesized. The magnetic isotherms of violet coloured crystals as long as 400 µm show a field-induced transition in an external field of about 2 T at temperatures approximately below 2 K. It is addressed that by assuming the coexistent positive and negative exchange between the nearest-neighbour spins in the linear trimer, this metamagnetism can be interpreted as a transition from antiferromagnetic to ferromagnetic exchange within each trimeric spin cluster. Although weak inter-cluster or inter-chain exchange to yield a long-range magnetic order is another possible and often attributed origin of metamagnetism in low-dimensional spin systems, this study demonstrates the significance of the exchange flip within each cluster in clustered spin networks.

2.
ACS Omega ; 8(3): 3493-3500, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36713744

RESUMO

A novel molecular assembly of a cobalt-sulfate coordination polymer and melamine is synthesized under acidic conditions. Bar-shaped pink monocrystals as long as 1 mm are found to align along magnetic field lines in the proximity of a strong magnet. Magnetometry shows no hysteresis at temperatures down to 2 K but instead magnetic anisotropy and antiferromagnetic coupling. X-ray diffraction on a single crystal reveals that the cobalt-sulfate chains are along the shortest lattice vector or the crystal's long axis. The crystal alignment along the magnetic flux can be attributed to single-ion anisotropy that results in longitudinal antiferromagnetic coupling along the chain. Both structurally and magnetically isotropic crystals of metal-organic hybrid materials can be highly useful as elemental components in magneto-optics.

3.
Materials (Basel) ; 15(15)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35955286

RESUMO

We report the local structural and superconducting properties of undoped and Ag-doped YBa2Cu3O6+x (YBCO) films with a thickness of up to 1 µm prepared by pulsed laser deposition on SrTiO3 (STO) single crystals and on ion-beam-assisted deposition (IBAD) and rolling-assisted biaxially textured substrate (RABiTS)-based metal templates. X-ray diffraction demonstrates the high crystalline quality of the films on both single crystalline substrates and metal-based templates, respectively. Although there was only a slight decrease in Tc of up to 1.5 K for the Ag-doped YBCO films on all substrates, we found significant changes in their transport characteristics. The effect of the silver doping mainly depended on the concentration of silver, the type of substrate, and the temperature and magnetic field. In general, the greatest improvement in Jc over a wide range of magnetic fields and temperatures was observed for the 5%Ag-doped YBCO films on STO substrates, showing a significant increase compared to undoped films. Furthermore, a slight Jc improvement was observed for the 2%Ag-doped YBCO films on the RABiTS templates at temperatures below 65 K, whereas Jc decreased for the Ag-doped films on IBAD-MgO-based templates compared to undoped YBCO films. Using detailed electron microscopy studies, small changes in the local microstructure of the Ag-doped YBCO films were revealed; however, no clear correlation was found with the transport properties of the films.

4.
Proc Natl Acad Sci U S A ; 118(37)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34493664

RESUMO

Magnetic superconductors are specific materials exhibiting two antagonistic phenomena, superconductivity and magnetism, whose mutual interaction induces various emergent phenomena, such as the reentrant superconducting transition associated with the suppression of superconductivity around the magnetic transition temperature (T m), highlighting the impact of magnetism on superconductivity. In this study, we report the experimental observation of the ferromagnetic order induced by superconducting vortices in the high-critical-temperature (high-T c) magnetic superconductor EuRbFe4As4 Although the ground state of the Eu2+ moments in EuRbFe4As4 is helimagnetism below T m, neutron diffraction and magnetization experiments show a ferromagnetic hysteresis of the Eu2+ spin alignment. We demonstrate that the direction of the Eu2+ moments is dominated by the distribution of pinned vortices based on the critical state model. Moreover, we demonstrate the manipulation of spin texture by controlling the direction of superconducting vortices, which can help realize spin manipulation devices using magnetic superconductors.

5.
RSC Adv ; 11(39): 23943-23947, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276969

RESUMO

Coordination complexes and polymers are central in inorganic and materials chemistry as a variety of metal centers and coordination geometries lead to a diverse range of interesting properties. Here, size and structure control of gem-like quality monocrystals is demonstrated at room temperature. Using the same set of precursors, the copper-to-melamine molar ratio is adjusted to synthesize either a novel coordination complex of dinuclear copper and melamine (Cu2M1), or a barely-studied coordination polymer of zigzag copper-chlorine chains (Cu4M1). Crystals of the former are dark green and square with a size up to 350 µm across. The latter is light green, octagonal, and as large as 5 mm across. The magnetic properties of both crystals reflect the low-dimensional arrangements of copper. The magnetic susceptibility of Cu2M1 is modelled with a spin-1/2 dimer, and that of Cu4M1 with a spin-1/2 one-dimensional Ising chain. Controlled synthesis of such quality magnetic crystals is a prerequisite for various magnetic and magneto-optical applications.

6.
Nanoscale ; 11(22): 10615-10621, 2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31139784

RESUMO

Single-molecule magnets exhibit magnetic ordering due to exchange coupling between localized spin components that makes them primary candidates as nanometric spintronic elements. Here we manipulate exchange interactions within a single-molecule magnet by nanometric structural confinement, exemplified with single-wall carbon nanotubes that encapsulate trimetric nickel(ii) acetylacetonate hosting three frustrated spins. It is revealed from bulk and Ni 3d orbital magnetic susceptibility measurements that the carbon tubular confinement allows a unique one-dimensional arrangement of the trimer in which the nearest-neighbour exchange is reversed from ferromagnetic to antiferromagnetic, resulting in quenched frustration as well as the Pauli paramagnetism is enhanced. The exchange reversal and enhanced spin delocalisation demonstrate the means of mechanically and electrically manipulating molecular magnetism at the nanoscale for nano-mechatronics and spintronics.

7.
Sci Rep ; 6: 26671, 2016 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-27220461

RESUMO

Since the high transition temperature (High-Tc) superconductivity was discovered in the series of materials containing iron (Fe), their potential for the applications has been extensively scrutinized. In particular, a lot of effort has been made in achieving the high current-carrying ability by revealing the vortex pinning behavior. Here, we report on the critical current density (Jc) for the pristine Ba1-xKxFe2As2 single crystals with various K concentrations (0.25 ≤ x ≤ 0.52) determined by the magnetization hysteresis loop measurements. The x-dependence of Jc is characterized by a spike-like peak at x ~ 0.30, which corresponds to the under-doped region. This behavior is distinct from a moderate Tc dome with a broad maximum spanning from x ~ 0.3 to 0.5. For the under-doped samples, with increasing magnetic field (H), a second magnetization peak in Jc is observed, whereas for the optimally- and over-doped samples, Jc monotonically decreases with H. This result emphasizes that fine tuning of doping composition is important to obtain strong flux pinning. The origin of the characteristic doping dependence of Jc is discussed in connection with the orthorhombic phase domain boundary, as well as the chemical inhomogeneity introduced by the dopant substitutions.

8.
Sci Rep ; 5: 15033, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26459370

RESUMO

Ensembles of fcc nickel nanowires have been synthesized with defined mean sizes in the interior of single-wall carbon nanotubes. The method allows the intrinsic nature of single-domain magnets to emerge with large coercivity as their size becomes as small as the exchange length of nickel. By means of X-ray magnetic circular dichroism we probe electronic interactions at nickel-carbon interfaces where nickel exhibit no hysteresis and size-dependent spin magnetic moment. A manifestation of the interacting two subsystems on a bulk scale is traced in the nanotube's magnetoresistance as explained within the framework of weak localization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...