Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Environ Monit Assess ; 195(11): 1368, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37875634

RESUMO

Environmental nanoremediation is an emerging technology that aims to rapidly and efficiently remove contaminants from the polluted sites using engineered nanomaterials (ENMs). Inorganic nanoparticles which are generally metallic, silica-based, carbon-based, or polymeric in nature serve to remediate through chemical reactions, filtration, or adsorption. Their greater surface area per unit mass and high reactivity enable them to treat groundwater, wastewater, oilfields, and toxic industrial contaminants. Despite the growing interest in nanotechnological solutions for bioremediation, the environmental and human hazard associated with their use is raising concerns globally. Nanoremediation techniques when compared to conventional remediation solutions show increased effectivity in terms of cost and time; however, the main challenge is the ability of ENMs to remove contaminants from different environmental mediums by safeguarding the ecosystem. ENMs improving the accretion of the pollutant and increasing their bioavailability should be rectified along with the vigilant management of their transfer to the upper levels of the food chain which subsequently causes biomagnification. The ecosystem-centered approach will help monitor the ecotoxicological impacts of nanoremediation considering the safety, sustainability, and proper disposal of ENMs. The environment and human health risk assessment of each novel engineered nanomaterial along with the regulation of life cycle assessment (LCA) tools of ENMs for nanoremediation can help investigate the possible environmental hazard. This review focuses on the currently available nanotechnological methods used for environmental remediation and their potential toxicological impacts on the ecosystem.


Assuntos
Recuperação e Remediação Ambiental , Nanoestruturas , Humanos , Ecossistema , Monitoramento Ambiental , Nanotecnologia/métodos , Nanoestruturas/toxicidade
2.
Biol Trace Elem Res ; 200(3): 988-1001, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33864199

RESUMO

Arsenic is a well-known element because of its toxicity. Humans as well as plants and animals are negatively affected by its exposure. Some countries suffer from high levels of arsenic in their tap water and soils, which is considered a primary arsenic-linked risk factor for living beings. Humans generally get exposed to arsenic by contaminated drinking waters, resulting in many health problems, ranging from cancer to skin diseases. On the other hand, the FDA-certified drug arsenic trioxide provides solutions for various diseases, including several types of cancers. This issue emphasizes the importance of speciation of the metalloid elements in terms of impacts on health. When species get exposed to arsenic, it affects the cells altering their involvement. It can lead to abnormalities in inflammatory mechanisms and the immune system which contribute to the negative impacts generated on the body. The poisoning originating from arsenic gives rise to various biological signs on the body which can be useful for the diagnosis. It is important to find true biomarkers for the detection of arsenic poisoning. In view of its application in medicine and biology, studies on understanding the biological activity of arsenic have increased. In this review, we aim at summarizing the current state of knowledge of arsenic and the mechanism behind its toxicity including genotoxicity, oxidative insults, epigenomic changes, and alterations in cellular signaling.


Assuntos
Intoxicação por Arsênico , Arsênio , Neoplasias , Animais , Arsênio/análise , Arsênio/toxicidade , Exposição Ambiental/análise , Epigenômica , Humanos , Neoplasias/induzido quimicamente , Neoplasias/genética
3.
Sci Rep ; 10(1): 19370, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33168919

RESUMO

Genetic variation in cytochrome P450 (CYP) 2C9 is known to cause significant inter-individual differences in drug response and adverse effects. The frequencies of CYP2C9*2 and CYP2C9*3, both of which are responsible for the low activity of the enzyme, are not known in the Pakistani population. Therefore, we screened various ethnic groups residing in Pakistan for these polymorphisms. A total of 467 healthy human volunteers were recruited from six major ethnicities of Pakistan after written informed consent. Our results indicate that about 20% of the Pakistani population has a genotype containing at least one low activity allele. Ethnic Punjabi and Pathan populations had the highest frequencies of wild type genotypes while Urdu, Seraiki, and Sindhi populations showed higher rates of both low activity genotypes. The Baloch population showed the highest rates of low activity genotypes with less than 50% of the samples showing wild type genotypes, suggesting that more than half of the Baloch population possesses low activity genotypes. The frequencies found in various ethnic groups in Pakistan were comparable with ethnicities in the South Asian region except for the Baloch population. These results suggest that pharmacogenetics screening for low activity genotypes may be a helpful tool for clinicians while prescribing medications metabolized by CYP2C9.


Assuntos
Alelos , Povo Asiático , Citocromo P-450 CYP2C9/genética , Frequência do Gene , Polimorfismo Genético , Adulto , Povo Asiático/etnologia , Povo Asiático/genética , Humanos , Masculino , Paquistão/etnologia
4.
PeerJ ; 8: e9721, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32879799

RESUMO

Genetic polymorphism in cytochrome P450 (CYP) monooxygenase genes is an important source of interindividual variability of drug response. CYP enzyme activities may change as a result of such polymorphisms which then, may affect drug metabolism. This would result in a change in the severity and frequency of adverse effects in addition to the non-responder phenomenon. CYP2E1, a member of CYP superfamily, affects the metabolism of several clinically important drugs such as halothane, paracetamol, etc. Genetic variation in CYP2E1 is known to cause significant inter-individual differences in drug response and adverse effects. The degree of genetic variation is found to be different in different populations around the world. The frequencies of two important polymorphisms in the CYP2E1*7C, NC_000010.10:g.135340548A>G (rs2070672) and CYP2E1, NC_000010.10:g.135339244G>C (rs3813865), are not known in the Pakistani population. In the present investigation, 636 healthy human volunteers were screened for these two single nucleotide polymorphism. Our results indicate that about 18% (rs2070672) and 28% (rs3813865) of the Pakistani population has a genotype containing at least one low activity allele. A significant interethnic variation in the frequencies of both the polymorphisms was observed. These results suggest that pharmacogenetics screening for low activity genotypes would be a helpful tool for clinicians when they prescribe medications metabolized by CYP2E1, as a significant fraction of the Pakistani population is expected to have a variable response to these drugs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...