Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Anat ; 239(1): 228-241, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33665841

RESUMO

Computed tomography (CT) scanning is being increasingly employed in the study of natural history, particularly to investigate the internal anatomy of unique specimens in museum collections. Different techniques to enhance the contrast between tissues have been developed to improve the quality of the scans while preserving the integrity of these rare specimens. Diffusible iodine-based contrast enhanced computed tomography (diceCT) was found to be particularly effective and reversible for staining tissues in formalin preserved specimens. While it can also be effectively employed to stain ethanol-preserved specimens of small size, the reversibility of this process and the applicability to large-bodied animals has never been thoroughly tested. Here, we describe a novel diceCT protocol developed to stain and de-stain ethanol-preserved prenatal specimens of baleen whales (Mysticeti, Cetacea). These large (10-90 cm in length only considering early fetal stages) specimens present unique challenges as they are rare in collections and irreplaceable, therefore it is imperative to not damage them with the staining process. Before trying this protocol on baleen whales' specimens, we conducted a pilot study on commercially available fetal pigs using the same parameters. This allowed us to optimize the staining time to obtain the best results in CT scanning and to test first-hand the effect of de-staining on ethanol-based specimens. External coloration of the specimens is also a concern with iodine-staining, as stained specimens assume a bright red color that needs to be removed from both internal and external tissues before they can be stored. To test the reversibility of the stain in ethanol-preserved specimens with fur, we also conducted a small experiment using commercially acquired domestic mice. After these trials were successful, we applied the staining and de-staining protocol to multiple fetal specimens of mysticetes up to 90 cm in length, both ethanol- and formalin-preserved. Specimens were soaked in a solution of 1% pure iodine in 70% ethanol for 1-28 days, according to their size. After scanning, specimens are soaked in a solution of 3% sodium thiosulfate in 70% ethanol that is able to completely wash out the iodine from the tissues in a shorter time frame, between a few hours and 14 days. The same concentrations were used for formalin-preserved specimens, but DI water was used as solvent instead of ethanol. The staining technique proved particularly useful to enhance the contrast difference between cartilage, mineralized bone, teeth, and the surrounding soft tissues even when the specimens where scanned in medical-grade CT scans. The specimens did not suffer any visible damage or shrinkage due to the procedure, and in both the fetal samples and in the mice the color of the stain was completely removed by the de-staining process. We conclude therefore that this protocol can be safely applied to a variety of ethanol-preserved museum specimens to enhance the quality of the CT scanning and highlight internal morphological features without recurring to dissection or other irreversible procedures. We also provide tips to best apply this protocol, from how to mix the solutions to how to minimize the staining time.


Assuntos
Feto/diagnóstico por imagem , Iodo , Coloração e Rotulagem/métodos , Tomografia Computadorizada por Raios X , Animais , Camundongos , Suínos
3.
Anat Rec (Hoboken) ; 303(1): 180-204, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30332718

RESUMO

Extant baleen whales (Mysticeti) share a distinct suite of extreme and unique adaptations to perform bulk filter feeding, such as a long, arched skull, and mandible and the complete loss of adult dentition in favor of baleen plates. However, mysticetes still develop tooth germs during ontogeny. In the fossil record, multiple groups document the transition from ancestral raptorial feeding to filter feeding. Fetal specimens give us an extraordinary opportunity to observe when and how this macroevolutionary transition occurs during gestation. We used iodine-enhanced and traditional CT scanning to visualize the internal anatomy of five fetuses of humpback whale representing the first two-thirds of gestation, and we combine these data with previously published reports to provide the first comprehensive qualitative description of the sequence of developmental changes that characterize the skull and dentition. We also use quantitative methods based on 3D landmarks to investigate the shape changes in the fetuses in relation to a juvenile cranial morphology. We found similarities in the ossification patterns of the humpback and other cetaceans (dolphins), but there appear to be major differences when comparing them to terrestrial artiodactyls. As for the tooth germs, this developmental sequence confirms that the tooth-to-baleen transition occurs in the last one-third of gestation. Analysis of cranial shape development revealed a progressive elongation of the rostrum and a resulting posterior movement of the nasals relative to the braincase. Future work will involve acquisition of data from other species to complete our documentation of the teeth-to-baleen transition. Anat Rec, 2018. © 2018 American Association for Anatomy.


Assuntos
Evolução Biológica , Jubarte/embriologia , Mandíbula/embriologia , Crânio/embriologia , Perda de Dente/fisiopatologia , Dente/embriologia , Adaptação Fisiológica , Animais , Feminino , Jubarte/anatomia & histologia , Mandíbula/anatomia & histologia , Gravidez , Crânio/anatomia & histologia , Dente/anatomia & histologia
4.
PLoS One ; 13(3): e0189883, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29538421

RESUMO

The semicircular canal (SC) system of the inner ear detects head angular accelerations and is essential for navigation and spatial awareness in vertebrates. Because the bony labyrinth encloses the membranous labyrinth SCs, it can be used as a proxy for animal behavior. The bony labyrinth of dicynodonts, a clade of herbivorous non-mammalian synapsids, has only been described in a handful of individuals and remains particularly obscure. Here we describe the bony labyrinth anatomy of three Endothiodon cf. bathystoma specimens from Mozambique based on digital reconstructions from propagation phase-contrast synchrotron micro-computed tomography. We compare these findings with the bony labyrinth anatomy of their close relative Niassodon. The bony labyrinths of Endothiodon and Niassodon are relatively similar and show only differences in the shape of the horizontal SCs and the orientation of the vertical SCs. When compared to extant mammals, Endothiodon and Niassodon have highly eccentric SCs. In addition, the Endothiodon SCs are nearly orthogonal. An eccentric and orthogonal SC morphology is consistent with a specialization in rapid head movements, which are typical of foraging or feeding behaviors. Furthermore, we estimate the body mass of these Endothiodon specimens at ~116 to 182 kg, based on the average SC radii calculated using a linear regression model optimized by the Amemiya Prediction Criterion. Our findings provide novel insights into the paleobiology of Endothiodon which are consistent with the peculiar feeding mechanism among dicynodonts presumed from their multiple postcanine toothrows.


Assuntos
Evolução Biológica , Orelha Interna/anatomia & histologia , Vertebrados/anatomia & histologia , Variação Anatômica , Animais , Tamanho Corporal , Orelha Interna/diagnóstico por imagem , Fósseis/anatomia & histologia , Fósseis/diagnóstico por imagem , Processamento de Imagem Assistida por Computador , Moçambique , Especificidade da Espécie , Microtomografia por Raio-X
5.
Nat Commun ; 7: 13734, 2016 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-27929063

RESUMO

Marsupial mammal relatives (stem metatherians) from the Mesozoic Era (252-66 million years ago) are mostly known from isolated teeth and fragmentary jaws. Here we report on the first near-complete skull remains of a North American Late Cretaceous metatherian, the stagodontid Didelphodon vorax. Our phylogenetic analysis indicates that marsupials or their closest relatives evolved in North America, as part of a Late Cretaceous diversification of metatherians, and later dispersed to South America. In addition to being the largest known Mesozoic therian mammal (node-based clade of eutherians and metatherians), Didelphodon vorax has a high estimated bite force and other craniomandibular and dental features that suggest it is the earliest known therian to invade a durophagous predator-scavenger niche. Our results broaden the scope of the ecomorphological diversification of Mesozoic mammals to include therian lineages that, in this case, were linked to the origin and evolution of marsupials.


Assuntos
Dentição , Fósseis/anatomia & histologia , Marsupiais , Filogenia , Crânio/anatomia & histologia , Animais , Paleodontologia
6.
Integr Comp Biol ; 56(6): 1271-1284, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27940618

RESUMO

The origin of baleen and filter feeding in mysticete cetaceans occurred sometime between approximately 34 and 24 million years ago and represents a major macroevolutionary shift in cetacean morphology (teeth to baleen) and ecology (raptorial to filter feeding). We explore this dramatic change in feeding strategy by employing a diversity of tools and approaches: morphology, molecules, development, and stable isotopes from the geological record. Adaptations for raptorial feeding in extinct toothed mysticetes provide the phylogenetic context for evaluating morphological apomorphies preserved in the skeletons of stem and crown edentulous mysticetes. In this light, the presence of novel vascular structures on the palates of certain Oligocene toothed mysticetes is interpreted as the earliest evidence of baleen and points to an intermediate condition between an ancestral condition with teeth only and a derived condition with baleen only. Supporting this step-wise evolutionary hypothesis, evidence from stable isotopes show how changes in dental chemistry in early toothed mysticetes tracked the changes in diet and environment. Recent discoveries also demonstrate how this transition was made possible by radical changes in cranial ontogeny. In addition, genetic mutations and the possession of dental pseudogenes in extant baleen whales support a toothed ancestry for mysticetes. Molecular and morphological data also document the dramatic developmental shifts that take place in extant fetal baleen whales, in skull development, resorption of a fetal dentition and growth of baleen. The mechanisms involved in this complex evolutionary transition that entails multiple, integrated aspects of anatomy and ecology are only beginning to be understood, and future work will further clarify the processes underlying this macroevolutionary pattern.


Assuntos
Ecologia , Comportamento Alimentar/fisiologia , Filogenia , Dente/fisiologia , Baleias/fisiologia , Animais , Osso e Ossos/fisiologia , Dente/anatomia & histologia , Baleias/anatomia & histologia , Baleias/genética
7.
J Morphol ; 277(12): 1599-1615, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27627739

RESUMO

Living mysticetes (baleen whales) and odontocetes (toothed whales) differ significantly in auditory function in that toothed whales are sensitive to high-frequency and ultrasonic sound vibrations and mysticetes to low-frequency and infrasonic noises. Our knowledge of the evolution and phylogeny of cetaceans, and mysticetes in particular, is at a point at which we can explore morphological and physiological changes within the baleen whale inner ear. Traditional comparative anatomy and landmark-based 3D-geometric morphometric analyses were performed to investigate the anatomical diversity of the inner ears of extinct and extant mysticetes in comparison with other cetaceans. Principal component analyses (PCAs) show that the cochlear morphospace of odontocetes is tangential to that of mysticetes, but odontocetes are completely separated from mysticetes when semicircular canal landmarks are combined with the cochlear data. The cochlea of the archaeocete Zygorhiza kochii and early diverging extinct mysticetes plot within the morphospace of crown mysticetes, suggesting that mysticetes possess ancestral cochlear morphology and physiology. The PCA results indicate variation among mysticete species, although no major patterns are recovered to suggest separate hearing or locomotor regimes. Phylogenetic signal was detected for several clades, including crown Cetacea and crown Mysticeti, with the most clades expressing phylogenetic signal in the semicircular canal dataset. Brownian motion could not be excluded as an explanation for the signal, except for analyses combining cochlea and semicircular canal datasets for Balaenopteridae. J. Morphol. 277:1599-1615, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Orelha Interna/anatomia & histologia , Extinção Biológica , Baleias/anatomia & histologia , Pontos de Referência Anatômicos , Animais , Cóclea/anatomia & histologia , Filogenia , Análise de Componente Principal
8.
J Anat ; 228(2): 324-37, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25911945

RESUMO

The inner ear of mammals consists of the cochlea, which is involved with the sense of hearing, and the vestibule and three semicircular canals, which are involved with the sense of balance. Although different regions of the inner ear contribute to different functions, the bony chambers and membranous ducts are morphologically continuous. The gross anatomy of the cochlea that has been related to auditory physiologies includes overall size of the structure, including volume and total spiral length, development of internal cochlear structures, including the primary and secondary bony laminae, morphology of the spiral nerve ganglion, and the nature of cochlear coiling, including total number of turns completed by the cochlear canal and the relative diameters of the basal and apical turns. The overall sizes, shapes, and orientations of the semicircular canals are related to sensitivity to head rotations and possibly locomotor behaviors. Intraspecific variation, primarily in the shape and orientation of the semicircular canals, may provide additional clues to help us better understand form and function of the inner ear.


Assuntos
Orelha Interna/anatomia & histologia , Orelha Interna/fisiologia , Audição/fisiologia , Mamíferos , Animais , Mamíferos/anatomia & histologia , Mamíferos/fisiologia
9.
10.
Anat Rec (Hoboken) ; 298(4): 675-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25737382

RESUMO

Retia mirabilia play broad roles in cetacean physiology, including thermoregulation during feeding and pressure regulations during diving. Vascular bundles of lingual retia are described within the base of the tongue of a neonatal female gray whale (Eschrichtius robustus). Each rete consists of a central artery surrounded by four to six smaller veins. The retia and constituent vessels decrease in diameter as they extend anteriorly within the hyoglossus muscle from a position anterior to the basihyal cartilage toward the apex of the tongue. The position of the retia embedded in the hyoglossus and the anterior constriction of the vessels differs from reports of similar vascular bundles that were previously identified in gray whales. The retia likely serve as a counter-current heat exchange system to control body temperature during feeding. Cold blood flowing toward the body center within the periarterial veins would accept heat from warm blood in the central artery flowing toward the anterior end of the tongue. Although thermoregulatory systems have been identified within the mouths of a few mysticete species, the distribution of such vascular structures likely is more widespread among baleen whales than has previously been described.


Assuntos
Regulação da Temperatura Corporal/fisiologia , Fluxo Sanguíneo Regional/fisiologia , Língua/anatomia & histologia , Língua/irrigação sanguínea , Baleias/anatomia & histologia , Animais , Animais Recém-Nascidos , Temperatura Corporal/fisiologia , Feminino , Baleias/fisiologia
11.
Anat Rec (Hoboken) ; 298(4): 648-59, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25737431

RESUMO

Information is scarce on gray whale (Eschrichtius robustus) anatomy and that of mysticetes in general. Dissection of the head of a neonatal gray whale revealed novel anatomical details of the eye, blowhole, incisive papilla with associated nasopalatine ducts, sensory hairs, and throat grooves. Compared to a similar sized right whale calf, the gray whale eyeball is nearly twice as long. The nasal cartilages of the gray whale, located between the blowholes, differ from the bowhead in having accessory cartilages. A small, fleshy incisive papilla bordered by two blind nasopalatine pits near the palate's rostral tip, previously undescribed in gray whales, may be associated with the vomeronasal organ, although histological evidence is needed for definitive identification. Less well known among mysticetes are the numerous elongated, stiff sensory hairs (vibrissae) observed on the gray whale rostrum from the ventral tip to the blowhole and on the mandible. These hairs are concentrated on the chin, and those on the lower jaw are arranged in a V-shaped pattern. We confirm the presence of two primary, anteriorly converging throat grooves, confined to the throat region similar to those of ziphiid and physeteroid odontocetes. A third, shorter groove occurs lateral to the left primary groove. The throat grooves in the gray whale have been implicated in gular expansion during suction feeding.


Assuntos
Olho/anatomia & histologia , Cabelo/anatomia & histologia , Nariz/anatomia & histologia , Faringe/anatomia & histologia , Animais , Animais Recém-Nascidos , Feminino , Baleias/anatomia & histologia
12.
Anat Rec (Hoboken) ; 298(4): 660-74, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25736921

RESUMO

Little is known about the anatomy and musculature of the gray whale (Eschrichtius robustus), especially related to the anatomy of the tongue and hyoid region. The recovery of an extremely fresh head of a neonatal female gray whale provided an opportunity to conduct the first in-depth investigation of the musculoskeletal features of the tongue and hyoid apparatus. Unlike other mysticetes, the gray whale tongue is strong, muscular, and freely mobile inside the buccal cavity. In particular, the genioglossus and hyoglossus muscles are extremely large and robust making up the majority of the body of the tongue. In addition, the genioglossus had a unique position and fiber orientation in the tongue compared to other mammals. The structure of the hyoid apparatus differs between E. robustus and other mysticete species, although there are similarities among individual elements. We provide the first documentation of fungiform papillae that may be associated with taste buds in Mysticeti. The highly mobile, robust tongue and the presence of well-defined tongue and hyoid musculature are in keeping with observations of gray whale feeding that suggest this group of whales utilize oral suction to draw benthic prey into the buccal cavity.


Assuntos
Osso Hioide/anatomia & histologia , Músculo Esquelético/anatomia & histologia , Língua/anatomia & histologia , Baleias/anatomia & histologia , Animais , Animais Recém-Nascidos , Feminino
13.
Anat Rec (Hoboken) ; 298(4): 703-19, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25737029

RESUMO

Mysticetes have evolved a novel filter feeding apparatus-baleen-an epidermal keratinous tissue composed of keratin that grows as a serial arrangement of transverse cornified laminae from the right and left sides of the palate. The structure and function of baleen varies among extant mysticete clades and this variation likely can be viewed as adaptations related to different filter feeding strategies. In one of the first morphometric studies of the full baleen apparatus, we describe the morphology of complete baleen racks in neonate, yearling and adult gray whales (Eschrichtius robustus), and note morphometric variations between age groups as well as within individual racks. Morphometric data and detailed descriptions were collected from the full baleen apparatus of three frozen specimens of E. robustus using previously derived ecologically significant and broad scale measurements of baleen. Additionally, characters of the baleen apparatus were described based on visible patterns of baleen laminae and plates on the dorsal root of the rack. Results indicate that the longest, widest, and thickest plates and laminae are found toward the posterior half of the rack, resulting in the greatest surface area for filtration of prey occurring in this region. Ontogenetic changes were also documented that reveal a progressive increase in the filter surface area of the developing baleen apparatus as baleen laminae and main plates grow in length and width. Also noted was a progressive posterior shift in the position of greatest filtration area. Histological examination of the epithelial base (Zwischensubstanz) and laminae showed basic epidermal layers, as well as gapping between layers and vacuoles.


Assuntos
Queratinas/fisiologia , Palato/anatomia & histologia , Baleias/anatomia & histologia , Animais , Animais Recém-Nascidos , Feminino , Oceano Pacífico
14.
Anat Rec (Hoboken) ; 298(4): 643-7, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25737249

RESUMO

The gray whale (Eschrichtius robustus) is the sole living representative of the mysticete (baleen whale) family Eschrichtiidae. Previous anatomical work on gray whales has been limited owing, in part, to difficulties of specimen access. These contributions to the anatomy of the gray whale head based on dissection of a stranded specimen from northern California include detailed investigation of internal and external features that confirm existing information and provide new evidence for their functional roles, particularly in thermoregulation and feeding.


Assuntos
Cabeça/anatomia & histologia , Baleias/anatomia & histologia , Animais , Animais Recém-Nascidos
15.
Anat Rec (Hoboken) ; 298(4): 691-702, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25663479

RESUMO

The origin of baleen in mysticetes heralded a major transition during cetacean evolution. Extant mysticetes are edentulous in adulthood, but rudimentary teeth develop in utero within open maxillary and mandibular alveolar grooves. The teeth are resorbed prenatally and the alveolar grooves close as baleen germ develops. Arteries supplying blood to highly vascularized epithelial tissue from which baleen develops pass through lateral nutrient foramina in the area of the embryonic alveolar grooves and rudimentary teeth. Those vessels are hypothesized to be branches of the superior alveolar artery, but branches of the greater palatine arteries may play a role in the baleen vascularization. Through a combination of latex injection, CT, and traditional dissection of the palate of a neonatal gray whale (Eschrichtius robustus), we confirm that the baleen receives blood from vessels within the superior alveolar canal via the lateral foramina. The greater palatine artery is restricted to its own passage with no connections to the baleen. This study has implications for the presence of baleen in extinct taxa by identifying the vessels and bony canals that supply blood to the epithelium from which baleen develops. The results indicate that the lateral foramina in edentulous mysticete fossils are bony correlates for the presence of baleen, and the results can be used to help identify bony canals and foramina that have been used to reconstruct baleen in extinct mysticetes that retained teeth in adulthood. Further comparisons are made with mammals that also possess oral keratin structures, including ruminants, ornithorhynchid monotremes, and sirenians.


Assuntos
Palato/irrigação sanguínea , Baleias/anatomia & histologia , Animais , Animais Recém-Nascidos , Evolução Biológica , Feminino
16.
J Anat ; 226(1): 22-39, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25400023

RESUMO

The evolution of hearing in cetaceans is a matter of current interest given that odontocetes (toothed whales) are sensitive to high frequency sounds and mysticetes (baleen whales) are sensitive to low and potentially infrasonic noises. Earlier diverging stem cetaceans (archaeocetes) were hypothesized to have had either low or high frequency sensitivity. Through CT scanning, the morphology of the bony labyrinth of the basilosaurid archaeocete Zygorhiza kochii is described and compared to novel information from the inner ears of mysticetes, which are less known than the inner ears of odontocetes. Further comparisons are made with published information for other cetaceans. The anatomy of the cochlea of Zygorhiza is in line with mysticetes and supports the hypothesis that Zygorhiza was sensitive to low frequency noises. Morphological features that support the low frequency hypothesis and are shared by Zygorhiza and mysticetes include a long cochlear canal with a high number of turns, steeply graded curvature of the cochlear spiral in which the apical turn is coiled tighter than the basal turn, thin walls separating successive turns that overlap in vestibular view, and reduction of the secondary bony lamina. Additional morphology of the vestibular system indicates that Zygorhiza was more sensitive to head rotations than extant mysticetes are, which likely indicates higher agility in the ancestral taxon.


Assuntos
Evolução Biológica , Orelha Interna/anatomia & histologia , Fósseis , Audição/fisiologia , Baleias/anatomia & histologia , Baleias/fisiologia , Animais , Orelha Interna/fisiologia , Especificidade da Espécie , Tomografia Computadorizada por Raios X
17.
Anat Rec (Hoboken) ; 297(11): 2205-15, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25312374

RESUMO

The cetacean nose presents a unique suite of anatomical modifications. Key among these is posterior movement of the external nares from the tip of the rostrum to the top of the head. Concomitant with these anatomical changes are functional changes including the evolution of echolocation in odontocetes, and reduction of olfaction in Neoceti (crown odontocetes and mysticetes). Anatomical and embryological development of the nose in crown cetaceans is reviewed as well as their functional implications. A sequence of evolutionary transformations of the nose is proposed in the transition from a terrestrial to an aquatic lifestyle made by whales. Basilosaurids and all later whales reduce the nasal turbinates. The next stage characterizes Neoceti which exhibit reduction of the major olfactory structures, i.e. the ethmoturbinates, cribriform plate and maxilloturbinates with further reduction and subsequent loss in odontocetes. These anatomical modifications reflect underlying genetic changes such as the reduction of olfactory receptor genes, although mysticetes retain some olfactory abilities. Modifications of the facial and nasal region of odontocetes reflect specialization for biosonar sound production.


Assuntos
Evolução Biológica , Cetáceos/anatomia & histologia , Cetáceos/fisiologia , Nariz/anatomia & histologia , Nariz/fisiologia , Animais , Humanos , Cavidade Nasal/anatomia & histologia , Cavidade Nasal/fisiologia , Olfato/fisiologia
18.
PLoS One ; 8(6): e66624, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23805251

RESUMO

BACKGROUND: Variation is a naturally occurring phenomenon that is observable at all levels of morphology, from anatomical variations of DNA molecules to gross variations between whole organisms. The structure of the otic region is no exception. The present paper documents the broad morphological diversity exhibited by the inner ear region of placental mammals using digital endocasts constructed from high-resolution X-ray computed tomography (CT). Descriptions cover the major placental clades, and linear, angular, and volumetric dimensions are reported. PRINCIPAL FINDINGS: The size of the labyrinth is correlated to the overall body mass of individuals, such that large bodied mammals have absolutely larger labyrinths. The ratio between the average arc radius of curvature of the three semicircular canals and body mass of aquatic species is substantially lower than the ratios of related terrestrial taxa, and the volume percentage of the vestibular apparatus of aquatic mammals tends to be less than that calculated for terrestrial species. Aspects of the bony labyrinth are phylogenetically informative, including vestibular reduction in Cetacea, a tall cochlear spiral in caviomorph rodents, a low position of the plane of the lateral semicircular canal compared to the posterior canal in Cetacea and Carnivora, and a low cochlear aspect ratio in Primatomorpha. SIGNIFICANCE: The morphological descriptions that are presented add a broad baseline of anatomy of the inner ear across many placental mammal clades, for many of which the structure of the bony labyrinth is largely unknown. The data included here complement the growing body of literature on the physiological and phylogenetic significance of bony labyrinth structures in mammals, and they serve as a source of data for future studies on the evolution and function of the vertebrate ear.


Assuntos
Evolução Biológica , Orelha Interna/anatomia & histologia , Mamíferos/anatomia & histologia , Animais
19.
PLoS One ; 6(6): e21311, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21731700

RESUMO

BACKGROUND: Anatomical comparisons of the ear region of baleen whales (Mysticeti) are provided through detailed osteological descriptions and high-resolution photographs of the petrotympanic complex (tympanic bulla and petrosal bone) of all extant species of mysticete cetaceans. Salient morphological features are illustrated and identified, including overall shape of the bulla, size of the conical process of the bulla, morphology of the promontorium, and the size and shape of the anterior process of the petrosal. We place our comparative osteological observations into a phylogenetic context in order to initiate an exploration into petrotympanic evolution within Mysticeti. PRINCIPAL FINDINGS: The morphology of the petrotympanic complex is diagnostic for individual species of baleen whale (e.g., sigmoid and conical processes positioned at midline of bulla in Balaenoptera musculus; confluence of fenestra cochleae and perilymphatic foramen in Eschrichtius robustus), and several mysticete clades are united by derived characteristics. Balaenids and neobalaenids share derived features of the bulla, such as a rhomboid shape and a reduced anterior lobe (swelling) in ventral aspect, and eschrichtiids share derived morphologies of the petrosal with balaenopterids, including loss of a medial promontory groove and dorsomedial elongation of the promontorium. Monophyly of Balaenoidea (Balaenidae and Neobalaenidae) and Balaenopteroidea (Balaenopteridae and Eschrichtiidae) was recovered in phylogenetic analyses utilizing data exclusively from the petrotympanic complex. SIGNIFICANCE: This study fills a major gap in our knowledge of the complex structures of the mysticete petrotympanic complex, which is an important anatomical region for the interpretation of the evolutionary history of mammals. In addition, we introduce a novel body of phylogenetically informative characters from the ear region of mysticetes. Our detailed anatomical descriptions, illustrations, and comparisons provide valuable data for current and future studies on the phylogenetic relationships, evolution, and auditory physiology of mysticetes and other cetaceans throughout Earth's history.


Assuntos
Osso e Ossos/anatomia & histologia , Orelha Média/anatomia & histologia , Extinção Biológica , Baleias/anatomia & histologia , Animais , Modelos Biológicos , Filogenia , Baleias/genética
20.
J Morphol ; 272(4): 452-64, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21284018

RESUMO

A large sample of isolated elephantimorph petrosal bones was recovered from Pleistocene deposits in Friesenhahn Cave, Bexar County, Texas. Morphology of the middle and inner ear of the elephantimorphs is described and variation within the sample is identified. Observed variations occur in the stapedial ratio, morphology of the aquaeductus Fallopii, and connection of the crista interfenestralis to the tympanohyal on the posterior portion of the petrosal to form a foramen for passage of the stapedius muscle. The morphology of the aquaeductus Fallopii supports an ontogenetic explanation for some variation, and a sequence of ossification surrounding the aquaeductus Fallopii, from the anterior end of the canal to the posterior, is hypothesized. The stapedial ratio varies to a high degree across the sample, and such variation should be considered when the ratio is used in phylogenetic analyses. Within the inner ear, the absence of the secondary lamina suggests evolution of low-frequency hearing in extinct proboscideans, which is known for extant elephants. The morphology of the petrosals from Friesenhahn Cave is compared to published descriptions of the ear regions of other extinct proboscideans, and the distribution and evolution of morphologic characters are discussed. J. Morphol., 2011. © 2011 Wiley-Liss, Inc.


Assuntos
Orelha Interna/diagnóstico por imagem , Orelha Média/diagnóstico por imagem , Mamífero Proboscídeo/anatomia & histologia , Animais , Evolução Biológica , Elefantes/anatomia & histologia , Extinção Biológica , Audição , Osso Petroso/diagnóstico por imagem , Texas , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...