Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 12(10): e0186864, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29073181

RESUMO

Medicinal plants represent a significant reservoir of unexplored substances for early-stage drug discovery. Of interest, two flowering Mediterranean plants have been used for thousands of years for their beneficial effects on nervous disorders, including anxiety and mood. However, the therapeutic potential of these plants regarding their ability to target ion channels and neuronal excitability remains largely unknown. Towards this goal, we have investigated the ability of Lavender and Rosemary to modulate T-type calcium channels (TTCCs). TTCCs play important roles in neuronal excitability, neuroprotection, sensory processes and sleep. These channels are also involved in epilepsy and pain. Using the whole-cell patch-clamp technique, we have characterized how Lavender and Rosemary extracts, as well as their major active compounds Linalool and Rosmarinic acid, modulate the electrophysiological properties of recombinant TTCCs (CaV3.2) expressed in HEK-293T cells. Both the methanolic and essential oil extracts as well as the active compounds of these plants inhibit Cav3.2 current in a concentration-dependent manner. In addition, these products also induce a negative shift of the steady-state inactivation of CaV3.2 current with no change in the activation properties. Taken together, our findings reveal that TTCCs are a molecular target of the Lavender and Rosemary compounds, suggesting that inhibition of TTCCs could contribute to the anxiolytic and the neuroprotective effects of these plants.


Assuntos
Canais de Cálcio Tipo T/efeitos dos fármacos , Lavandula/química , Extratos Vegetais/farmacologia , Rosmarinus/química , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo T/fisiologia , Células HEK293 , Humanos , Metanol/química , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp
2.
Arterioscler Thromb Vasc Biol ; 37(10): 1944-1955, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28798140

RESUMO

OBJECTIVE: The role of hemoglobin and myoglobin in the cardiovascular system is well established, yet other globins in this context are poorly characterized. Here, we examined the expression and function of cytoglobin (CYGB) during vascular injury. APPROACH AND RESULTS: We characterized CYGB content in intact vessels and primary vascular smooth muscle (VSM) cells and used 2 different vascular injury models to examine the functional significance of CYGB in vivo. We found that CYGB was strongly expressed in medial arterial VSM and human veins. In vitro and in vivo studies indicated that CYGB was lost after VSM cell dedifferentiation. In the rat balloon angioplasty model, site-targeted delivery of adenovirus encoding shRNA specific for CYGB prevented its reexpression and decreased neointima formation. Similarly, 4 weeks after complete ligation of the left common carotid, Cygb knockout mice displayed little to no evidence of neointimal hyperplasia in contrast to their wild-type littermates. Mechanistic studies in the rat indicated that this was primarily associated with increased medial cell loss, terminal uridine nick-end labeling staining, and caspase-3 activation, all indicative of prolonged apoptosis. In vitro, CYGB could be reexpressed after VSM stimulation with cytokines and hypoxia and loss of CYGB sensitized human and rat aortic VSM cells to apoptosis. This was reversed after antioxidant treatment or NOS2 (nitric oxide synthase 2) inhibition. CONCLUSIONS: These results indicate that CYGB is expressed in vessels primarily in differentiated medial VSM cells where it regulates neointima formation and inhibits apoptosis after injury.


Assuntos
Apoptose , Globinas/fisiologia , Músculo Liso Vascular/citologia , Músculo Liso Vascular/fisiopatologia , Remodelação Vascular/fisiologia , Animais , Caspase 3/metabolismo , Diferenciação Celular , Citoglobina , Regulação para Baixo , Ativação Enzimática , Camundongos , Camundongos Knockout , Músculo Liso Vascular/efeitos dos fármacos , Neointima/fisiopatologia , Óxido Nítrico Sintase Tipo II/toxicidade , Oxirredução , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...