Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Monit Assess ; 192(3): 201, 2020 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-32107647

RESUMO

Bacterial diversity is an important factor controlling the functioning of aquatic ecosystems. With the critical sensitivity of the microbial community towards chemical and/or physical factors, this study aims to identify for the first time the microbiota of the Lebanese coastal Ibrahim River. Water and sediment samples were collected at the outlet of the river, between May 2016 and April 2017, covering a hydrological year. The main microbiological parameters were tested: total germs, total coliforms, fecal coliforms, Escherichia coli, and Enterococcus. A DNA extraction followed by NGS analysis was applied on both water and sediment samples, in order to investigate the bacterial diversity and the habitat specificity. The link between this microbial composition and seasonal variations was then investigated. Results showed fourteen different bacterial phyla, among which were major microorganisms, including a wide variety of pathogenic and commensal ones, frequently available in the aquatic ecosystem. Most of the detected water microbiota were mostly correlated to other freshwater samples, with the main dominance of 5 common phyla: Proteobacteria, Actinobacteria, Firmicutes, Bacteroidetes, and Acidobacteria with the average of 43%, 13%, 16%, 10%, and 4% respectively. Despite this overall similarity, multiple patterns were visible, confirming the influence of the temporal variations and the discharge influence on taxonomic diversity. Sediment samples contained the highest relative abundance of Proteobacteria, Firmicutes, and Bacteroidetes: with an average of 31%, 44%, and 22% respectively. Our study showed that the Ibrahim River outlet has a specific habitat clustering. The among-compartment bacterial community variation, which responded to changing environmental factors, approved the existence of a meaningful temporal heterogeneity.


Assuntos
Microbiota , Rios , Microbiologia da Água , Monitoramento Ambiental , Líbano , RNA Ribossômico 16S , Água
2.
Sci Total Environ ; 463-464: 91-101, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23792251

RESUMO

For centuries, many Mediterranean catchments were covered with vineyards in which copper was widely applied to protect grapevines against fungus. In the Mediterranean-type flow regime, brief and intense flood events increase the stream water discharge by up to 10 times and cause soil leaching and storm runoff. Because vineyards are primarily cultivated on steep slopes, high Cu fluxes are discharged by surface water runoff into the rivers. The purpose of this work was to investigate the riverine behavior and transport of anthropogenic Cu by coupling a sequential chemical extraction (SCE) procedure, used to determine Cu partitioning between residual and non-residual fractions, with δ(65)Cu isotopic measurements in each fraction. In the Baillaury catchment, France, we sampled soils (cultivated and abandoned), river bed sediments (BS), suspended particulate matter (SPM), and river water during the flash flood event of February 2009. Copper partitioning using SCE show that most of Cu in abandoned vineyard soil was in the residual phase (>60%) whereas in cultivated soil, BS and SPM, Cu was mostly (>25%) in non-residual fractions, mainly adsorbed onto iron oxide fractions. A small fraction of Cu was associated with organic matter (5 to 10%). Calculated enrichment factors (EF) are higher than 2 and the anthropogenic contribution was estimated between 50 to 85%. Values for δ(65)Cu in bulk samples were similar to bedrock therefore; δ(65)Cu on SCE fractions of superficial soils and SPM allowed for discrimination between Cu origin and distribution. Copper in residual fractions was of natural mineral origin (δ(65)Cu close to local bedrock, +0.07‰). Copper in water soluble fraction of SPM (δ(65)Cu=+0.26‰) was similar to dissolved river Cu (δ(65)Cu=+0.31‰). Copper from fungicide treatment (δ(65)Cu=-0.35‰) was bound to organic matter (δ(65)Cu=-0.20‰) without or with slight isotopic fractioning. A preferential adsorption of (65)Cu onto iron oxides (δ(65)Cu=+0.5‰) is shown.


Assuntos
Cobre/análise , Fungicidas Industriais/análise , Vitis , Agricultura/métodos , França , Isótopos/análise , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA