Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 8(11): 7369-7379, 2008 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-27873934

RESUMO

In this paper, the use of a new technique to obtain transient sensor information is introduced and its usefulness to improve the selectivity of metal oxide gas sensors is discussed. The method is based on modulating the flow of the carrier gas that brings the species to be measured into the sensor chamber. In such a way, the analytes' concentration at the surface of the sensors is altered. As a result, reproducible patterns in the sensor response develop, which carry important information for helping the sensor system, not only to discriminate among the volatiles considered but also to semi-quantify them. This has been proved by extracting features from sensor dynamics using the discrete wavelet transform (DWT) and by building and validating support vector machine (SVM) classification models. The good results obtained (100% correct identification among 5 volatile compounds and nearly a 89% correct simultaneous identification and quantification of these volatiles), which clearly outperform those obtained when the steady-state response is used, prove the concept behind flow modulation.

2.
Sensors (Basel) ; 8(1): 142-156, 2008 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-27879699

RESUMO

The aim of the present study was to develop an electronic nose for the quality control of red meat. Electronic nose and bacteriological measurements are performed to analyse samples of beef and sheep meat stored at 4°C for up to 15 days. Principal component analysis (PCA) and support vector machine (SVM) based classification techniques are used to investigate the performance of the electronic nose system in the spoilage classification of red meats. The bacteriological method was selected as the reference method to consistently train the electronic nose system. The SVM models built classified meat samples based on the total microbial population into "unspoiled" (microbial counts < 6 log10 cfu/g) and "spoiled" (microbial counts ≥ 6 log10 cfu/g). The preliminary results obtained by the bacteria total viable counts (TVC) show that the shelf-life of beef and sheep meats stored at 4 °C are 7 and 5 days, respectively. The electronic nose system coupled to SVM could discriminate between unspoiled/ spoiled beef or sheep meats with a success rate of 98.81 or 96.43 %, respectively. To investigate whether the results of the electronic nose correlated well with the results of the bacteriological analysis, partial least squares (PLS) calibration models were built and validated. Good correlation coefficients between the electronic nose signals and bacteriological data were obtained, a clear indication that the electronic nose system can become a simple and rapid technique for the quality control of red meats.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA