Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Sports Med ; 51(8): 2169-2175, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37232327

RESUMO

BACKGROUND: Ankle lateral ligament sprains are common injuries in sports, and some may result in persistent ankle pain and a feeling of instability without clinical evidence of instability. The anterior talofibular ligament (ATFL) has 2 distinct fascicles, and recent publications have suggested that injury isolated to the superior fascicle might be the cause of these chronic symptoms. This study aimed to identify the biomechanical properties conferred by the fascicles in stabilizing the ankle in order to understand potential clinical problems that may follow when the fascicles are injured. PURPOSE/HYPOTHESIS: The aim of this study was to determine the contribution of superior and inferior fascicles of the ATFL in restraining anteroposterior tibiotalar resistance, internal external tibial rotation resistance, and inversion eversion talar rotation resistance. It was hypothesized that an isolated injury of the ATFL superior fascicle would have a measurable effect on ankle stability and that the superior and inferior fascicles would restrain different motions of the ankle. STUDY DESIGN: Descriptive laboratory study. METHODS: A robotic system with 6 degrees of freedom was used to test ankle instability in 10 cadavers. Serial sectioning following the most common injury pattern (from superior to inferior fascicles) was performed on the ATFL while the robot ensured reproducible movement through a physiological range of dorsiflexion and plantarflexion. RESULTS: Sectioning of only the ATFL superior fascicle had a significant and measurable effect on ankle stability, resulting in increased internal rotation and anterior translation of the talus, especially in plantarflexion. Sectioning of the entire ATFL resulted in significantly decreased resistance in anterior translation, internal rotation, and inversion of the talus. CONCLUSION: Rupture of only the superior fascicle of the ATFL may lead to minor instability or microinstability of the ankle joint, without objective clinical findings of gross clinical laxity. CLINICAL RELEVANCE: Some patients develop chronic symptoms after an ankle sprain without overt signs of instability. This may be explained by an isolated injury to the ATFL superior fascicle, and diagnosis may require careful clinical evaluation and magnetic resonance imaging examination looking at the individual fascicles. It is possible that such patients may benefit from lateral ligament repair despite having no gross clinical instability.


Assuntos
Instabilidade Articular , Ligamentos Laterais do Tornozelo , Procedimentos Cirúrgicos Robóticos , Robótica , Humanos , Relevância Clínica , Articulação do Tornozelo/fisiologia , Cadáver
2.
J Bone Joint Surg Am ; 104(11): 1015-1023, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35133990

RESUMO

BACKGROUND: Hip dysplasia is characterized by insufficient acetabular coverage around the femoral head, which leads to instability, pain, and injury. Periacetabular osteotomy (PAO) aims to restore acetabular coverage and function, but its effects on capsular mechanics and joint stability are still unclear. The purpose of this study was to examine the effects of PAO on capsular mechanics and joint range of motion in dysplastic hips. METHODS: Twelve cadaveric dysplastic hips (denuded to bone and capsule) were mounted onto a robotic tester and tested in multiple positions: (1) full extension, (2) neutral 0°, (3) flexion of 30°, (4) flexion of 60°, and (5) flexion of 90°. In each position, the hips underwent internal and external rotation, abduction, and adduction using 5 Nm of torque. Each hip then underwent PAO to reorient the acetabular fragment, preserving the capsular ligaments, and was retested. RESULTS: The PAO reduced internal rotation in flexion of 90° (∆IR = -5°; p = 0.003), and increased external rotation in flexion of 60° (∆ER = +7°; p = 0.001) and flexion of 90° (∆ER = +11°; p = 0.001). The PAO also reduced abduction in extension (∆ABD = -10°; p = 0.002), neutral 0° (∆ABD = -7°; p = 0.001), and flexion of 30° (∆ABD = -8°; p = 0.001), but increased adduction in neutral 0° (∆ADD = +9°; p = 0.001), flexion of 30° (∆ADD = +11°; p = 0.002), and flexion of 60° (∆ADD = +11°; p = 0.003). CONCLUSIONS: PAO caused reductions in hip abduction and internal rotation but greater increases in hip adduction and external rotation. The osseous acetabular structure and capsule both play a role in the balance between joint mobility and stability after PAO.


Assuntos
Luxação Congênita de Quadril , Luxação do Quadril , Acetábulo/cirurgia , Fenômenos Biomecânicos , Luxação do Quadril/cirurgia , Luxação Congênita de Quadril/cirurgia , Articulação do Quadril/cirurgia , Humanos , Osteotomia , Amplitude de Movimento Articular
3.
J Shoulder Elbow Surg ; 31(3): 561-570, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34624464

RESUMO

BACKGROUND: Accurate prosthesis placement in arthroplasty is an important factor in the long-term success of these interventions. Many types of guidance technology have been described to date often suffering from high costs, complex theater integration, time inefficiency, and problems with day-to-day usability. We present a novel, intraoperative robotics platform, capable of rapid, real-time manufacture of low-cost patient-specific guides while overcoming many of the issues with existing approaches. METHODS: A prototype robotics platform was assessed in a 24-specimen cadaveric trial during sequential simulated shoulder arthroplasty procedures. The platform consisted of a tableside robot with sterile drapes and sterile disposable components. The robot itself comprised a 3D optical scanner, a 3-axis sterile robotic drill, and a 2-axis receptacle into which the disposable consumables were inserted. The consumable was composed of a region of rapidly setting moldable material and a clip allowing it to be reversibly attached to the robot. Computed tomographic (CT) imaging was obtained for all cadaveric specimens, and a surgical plan was created focusing on glenoid component position-specifically, guidewire position to allow for accurate glenoid preparation before implant insertion. Intraoperatively, for every specimen, the relevant osseous anatomy was exposed and humeral and glenoid preparation undertaken in the usual manner. The sterile disposable was used to create a mold of the joint surface. Once set, the mold was inserted into the robot and an optical scan of the surface was undertaken followed by automatic surface registration with the CT data and surgical plan. An automatic guide hole was subsequently drilled into the molded blank, which was removed from the robot and placed back into the patient, with the melded surface ensuring exact replacement. The guidewire was then driven through the guide hole in accordance with the preoperative plan. RESULTS: The novel robotic platform achieved average angular accuracies of 1.9° (standard deviation [SD] 1.3) version and 1.2° (SD 0.7) inclination with positional accuracy of 1.1 mm (SD 0.7) compared to a preoperative plan. DISCUSSION: We have described a novel robotics platform that is able to reliably produce patient-specific intraoperative guides to allow for accurate guidewire placement. Guidance is provided using a portable intraoperative device. The results suggest achieved accuracy levels may be equivalent to those seen in other existing guidance technologies; however, eventual in vivo trials and analysis is required. This technology has potential transferability to improve accuracy in other areas of arthroplasty.


Assuntos
Artroplastia do Ombro , Robótica , Articulação do Ombro , Cirurgia Assistida por Computador , Artroplastia , Artroplastia do Ombro/métodos , Cadáver , Humanos , Imageamento Tridimensional/métodos , Articulação do Ombro/diagnóstico por imagem , Articulação do Ombro/cirurgia , Cirurgia Assistida por Computador/métodos
4.
Knee Surg Sports Traumatol Arthrosc ; 29(12): 3902-3909, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34436636

RESUMO

PURPOSE: Persistent acromioclavicular joint (ACJ) instability following high grade injuries causes significant symptoms. The importance of horizontal plane stability is increasingly recognised. There is little evidence of the ability of current implant methods to restore native ACJ stability in the vertical and horizontal planes. The purpose of this work was to measure the ability of three implant reconstructions to restore native ACJ stability. METHODS: Three groups of nine fresh-frozen shoulders each were mounted into a robotic testing system. The scapula was stationary and the robot displaced the clavicle to measure native anterior, posterior, superior and inferior (A, P, S, I) stability at 50 N force. The ACJ capsule, conoid and trapezoid ligaments were transected and the ACJ was reconstructed using one of three commercially available systems. Two systems (tape loop + screw and tape loop + button) wrapped a tape around the clavicle and coracoid, the third system (sutures + buttons) passed directly through tunnels in the clavicle and coracoid. The stabilities were remeasured. The data for A, P, S, I stability and ranges of A-P and S-I stability were analyzed by ANOVA and repeated-measures Student t tests with Bonferroni correction, to contrast each reconstruction stability versus the native ACJ data for that set of nine specimens, and examined contrasts among the reconstructions. RESULTS: All three reconstructions restored the range of A-P stability to that of the native ACJ. However, the coracoid loop devices shifted the clavicle anteriorly. For S-I stability, only the sutures + buttons reconstruction did not differ significantly from native ligament restraint. CONCLUSIONS: Only the sutures + buttons reconstruction, that passed directly through tunnels in the clavicle and coracoid, restored all stability measures (A, P, S, I) to the native values, while the tape implants wrapped around the bones anteriorised the clavicle. These findings show differing abilities among reconstructions to restore native stability in horizontal and vertical planes. (300 words).


Assuntos
Articulação Acromioclavicular , Artroplastia de Substituição , Articulação Acromioclavicular/cirurgia , Clavícula/cirurgia , Humanos , Ligamentos Articulares/cirurgia , Âncoras de Sutura
5.
Am J Sports Med ; 49(3): 747-756, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33533633

RESUMO

BACKGROUND: Tibial torsion is a twist in the tibia measured as an angle between a proximal axis line and a distal axis line. Abnormal torsion has been associated with a variety of painful clinical syndromes of the lower limb. Measurements of normal tibial torsion reported by different authors vary by 100% (ranging from 20° to 42°), making it impossible to determine normal and pathological levels. PURPOSE: To address the problem of unreliable measurements, this study was conducted to define an automated, validated computer method to calculate tibial torsion. Reliability was compared with current clinical methods. The difference between measurements of torsion generated from computed tomography (CT) and magnetic resonance imaging (MRI) scans of the same bone, and between males and females, was assessed. STUDY DESIGN: Controlled laboratory study. METHODS: Previous methods of analyzing tibial torsion were reviewed, and limitations were identified. An automated measurement method to address these limitations was defined. A total of 56 cadaveric and patient tibiae (mean ± SD age, 37 ± 15 years; range, 17-71 years; 28 female) underwent CT scanning, and 3 blinded assessors made torsion measurements by applying 2 current clinical methods and the automated method defined in the present article. Intraclass correlation coefficient (ICC) values were calculated. Further, 12 cadaveric tibiae were scanned by MRI, stripped of tissue, and measured using a structured light (SL) scanner. Differences between torsion values obtained from CT, SL, and MRI scans, and between males and females, were compared using t tests. SPSS was used for all statistical analysis. RESULTS: When the automated method was used, the tibiae had a mean external torsion of 29°± 11° (range, 9°-65). Automated torsion assessment had excellent reliability (ICC, 1), whereas current methods had good reliability (ICC, 0.78-0.81). No significant difference was found between the torsion values calculated from SL and CT (P = .802), SL and MRI (P = .708), or MRI and CT scans (P = .826). CONCLUSION: The use of software to automatically perform measurements ensures consistency, time efficiency, validity, and accuracy not possible with manual measurements, which are dependent on assessor experience. CLINICAL RELEVANCE: We recommend that this method be adopted in clinical practice to establish databases of normal and pathological tibial torsion reference values and ultimately guide management of related conditions.


Assuntos
Fêmur , Tíbia , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Tíbia/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Anormalidade Torcional/diagnóstico por imagem , Adulto Jovem
6.
J Shoulder Elbow Surg ; 30(6): 1251-1256, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33010434

RESUMO

BACKGROUND: Approximately 9% of shoulder girdle injuries involve the acromioclavicular joint (ACJ). There is no clear gold standard or consensus on surgical management of these injuries, in part perpetuated by our incomplete understanding of native ACJ biomechanics. We have therefore conducted a biomechanical study to assess the stabilizing structures of the ACJ in superior-inferior (SI) translation and anterior-posterior (AP) translation. METHODS: Twenty fresh frozen cadaveric specimens were prepared and mounted onto a robotic arm. The intact native joint was tested in SI translation and AP translation under a 50-N displacing force. Each specimen was retested after sectioning of its stabilizing structures in the following order: investing fascia, ACJ capsular ligaments, trapezoid ligament, and conoid ligament. Their contributions to resisting ACJ displacements were calculated. RESULTS: In the intact native ACJ, mean anterior displacement of the clavicle was 7.9 ± 4.3 mm, mean posterior displacement was 7.2 ± 2.6 mm, mean superior displacement was 5.8 ± 3.0 mm, and mean inferior displacement was 3.6 ± 2.6 mm. The conoid ligament was the primary stabilizer of superior displacement (45.6%). The ACJ capsular ligament was the primary stabilizer of inferior displacement (33.8%). The capsular ligament and conoid ligament contributed equally to anterior stability, with rates of 23% and 25.2%, respectively. The capsular ligament was the primary contributor to posterior stability (38.4%). CONCLUSION: The conoid ligament is the primary stabilizer of superior displacement of the clavicle at the ACJ and contributes significantly to AP stability. Consideration should be given to reconstruction of the ACJ capsular ligament for complete AP stability in high-grade and horizontally unstable ACJ injuries.


Assuntos
Articulação Acromioclavicular , Articulação Acromioclavicular/cirurgia , Fenômenos Biomecânicos , Cadáver , Clavícula , Humanos , Cápsula Articular/cirurgia , Ligamentos Articulares
7.
Arthroscopy ; 37(1): 159-170, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32927001

RESUMO

PURPOSE: The purpose of this in vitro cadaveric study was to examine the contributions of each surgical stage during cam femoroacetabular impingement (FAI) surgery (i.e., intact-cam hip, T-capsulotomy, cam resection, and capsular repair) toward hip range of motion, translation, and microinstability. METHODS: Twelve cadaveric cam hips were denuded to the capsule and mounted onto a robotic tester. The hips were positioned in several flexion positions-full extension, neutral (0°), 30° of flexion, and 90° of flexion-and performed internal-external rotations to 5 Nm of torque in each position. The hips underwent a series of surgical stages (T-capsulotomy, cam resection, and capsular repair) and were retested after each stage. Changes in range of motion, translation, and microinstability (overall translation normalized by femoral head radius) were measured after each stage. RESULTS: Regarding range of motion, cam resection increased internal rotation at 90° of flexion (change in internal rotation = +6°, P = .001) but did not affect external rotation. Capsular repair restrained external rotation compared with the cam resection stage (change in external rotation = -8° to -4°, P ≤ .04). In terms of translation, the hip translated after cam resection at 90° of flexion in the medial-lateral plane (change in translation = +1.9 mm, P = .04) relative to the intact and capsulotomy stages. Regarding microinstability, capsulotomy increased microinstability in 30° of flexion (change in microinstability [ΔM] = +0.05, P = .003), but microinstability did not further increase after cam resection. At 90° of flexion, microinstability did not increase after capsulotomy (ΔM = +0.03, P = .2) but substantially increased after cam resection (ΔM = +0.08, P = .03), accounting for a 31% change with respect to the intact stage. CONCLUSIONS: Cam resection increased microinstability by 31% during deep hip flexion relative to the intact hip. This finding suggests that iatrogenic microinstability may be due to separation of the labral seal and resected contour of the femoral head. CLINICAL RELEVANCE: Our in vitro study showed that, at time zero and prior to postoperative recovery, excessive motion after cam resection could disrupt the labral seal. Complete cam resection should be performed cautiously to avoid disruption of the labral seal and postoperative microinstability.


Assuntos
Impacto Femoroacetabular/fisiopatologia , Impacto Femoroacetabular/cirurgia , Articulação do Quadril/cirurgia , Instabilidade Articular/fisiopatologia , Procedimentos Ortopédicos , Adulto , Fenômenos Biomecânicos/fisiologia , Cadáver , Articulação do Quadril/fisiopatologia , Humanos , Imageamento Tridimensional , Masculino , Amplitude de Movimento Articular/fisiologia , Tomografia Computadorizada por Raios X
8.
J Orthop Res ; 39(9): 1870-1876, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33222265

RESUMO

Advancements in imaging and segmentation techniques mean that three dimensional (3D) modeling of bones is now increasingly used for preoperative planning and registration purposes. Computer tomography (CT) scans are commonly used due to their high bone-soft tissue contrast, however they expose subjects to radiation. Alternatively, magnetic resonance imaging (MRI) is radiation-free: however, geometric field distortion and poor bone contrast have been reported to degrade bone model validity compared to CT. The present study assessed the accuracy of 3D femur and tibia models created from "Black Bone" 3T MRI and high resolution CT scans taken from 12 intact cadaveric lower limbs by comparing them with scans of the de-fleshed and cleaned bones carried out using a high-resolution portable compact desktop 3D scanner (Model HDI COMPACT C210; Polyga). This scanner used structured light (SL) to capture 3D scans with an accuracy of up to 35 µm. Image segmentation created 3D models and for each bone the corresponding CT and MRI models were aligned with the SL model using the iterative closest point (ICP) algorithm and the differences between models calculated. Hausdorff distance was also determined. Compared to SL scans, the CT models had an ICP error of 0.82 ± 0.2 and 0.85 ± 0.2 mm for the tibia and femur respectively, whilst the MRI models had an error of 0.97 ± 0.2 and 0.98 ± 0.18 mm. A one-way analysis of variance found no significant difference in the Hausdorff distances or ICP values between the three scanning methods (p > .05). The black bone MRI method can provide accurate geometric measures of the femur and tibia that are comparable to those achieved with CT. Given the lack of ionizing radiation this has significant benefits for clinical populations and also potential for application in research settings.


Assuntos
Imageamento Tridimensional , Imageamento por Ressonância Magnética , Computadores , Humanos , Imageamento Tridimensional/métodos , Extremidade Inferior/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Tomografia Computadorizada por Raios X/métodos
9.
Arthroscopy ; 35(7): 2101-2111, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31272629

RESUMO

PURPOSE: To evaluate the load-bearing functions of the fibers of the anterior cruciate ligament (ACL) tibial attachment in restraining tibial anterior translation, internal rotation, and combined anterior and internal rotation laxities in a simulated pivot-shift test. METHODS: Twelve knees were tested using a robot. Laxities tested were: anterior tibial translation (ATT), internal rotation (IR), and coupled translations and rotations during a simulated pivot-shift. The kinematics of the intact knee was replayed after sequentially transecting 9 segments of the ACL attachment and fibers entering the lateral gutter, measuring their contributions to restraining laxity. The center of effort (COE) of the ACL force transmitted to the tibia was calculated. A blinded anatomic analysis identified the densest fiber area in the attachment of the ACL and thus its centroid (center of area). This centroid was compared with the biomechanical COE. RESULTS: The anteromedial tibial fibers were the primary restraint of ATT (84% across 0° to 90° flexion) and IR (61%) during isolated and coupled displacements, except for the pivot-shift and ATT in extension. The lateral gutter resisted 28% of IR at 90° flexion. The anteromedial fibers showed significantly greater restraint of simulated pivot-shift rotations than the central and posterior fibers (P < .05). No significant differences (all <2 mm) were found between the anatomic centroid of the C-shaped attachment and the COE under most loadings. CONCLUSIONS: The peripheral anteromedial fibers were the most important area of the ACL tibial attachment in the restraint of tibial anterior translation and internal rotation during isolated and coupled displacements. These mechanical results matched the C-shaped anteromedial attachment of the dense collagen fibers of the ACL. CLINICAL RELEVANCE: The most important fibers in restraining tibial displacements attach to the C-shaped anteromedial area of the native ACL tibial attachment. This finding provides an objective rationale for ACL graft position to enable it to reproduce the physiological path of load transmission for tibial restraint.


Assuntos
Lesões do Ligamento Cruzado Anterior/cirurgia , Reconstrução do Ligamento Cruzado Anterior/métodos , Ligamento Cruzado Anterior/cirurgia , Instabilidade Articular/cirurgia , Articulação do Joelho/cirurgia , Tíbia/cirurgia , Adulto , Idoso , Ligamento Cruzado Anterior/diagnóstico por imagem , Lesões do Ligamento Cruzado Anterior/complicações , Lesões do Ligamento Cruzado Anterior/fisiopatologia , Cadáver , Feminino , Humanos , Instabilidade Articular/etiologia , Instabilidade Articular/fisiopatologia , Articulação do Joelho/fisiopatologia , Masculino , Pessoa de Meia-Idade , Amplitude de Movimento Articular/fisiologia , Suporte de Carga
10.
Am J Sports Med ; 47(2): 420-430, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30596529

RESUMO

BACKGROUND: Surgical management of cam femoroacetabular impingement (FAI) aims to preserve the native hip and restore joint function, although it is unclear how the capsulotomy, cam deformity, and capsular repair influence joint mechanics to balance functional mobility. PURPOSE: To examine the contributions of the capsule and cam deformity to hip joint mechanics. Using in vitro, cadaveric methods, we examined the individual effects of the surgical capsulotomy, cam resection, and capsular repair on passive range of motion and resistance of applied torque. STUDY DESIGN: Descriptive laboratory study. METHODS: Twelve cadaveric hips with cam deformities were skeletonized to the capsule and mounted onto a robotic testing platform. The robot positioned each intact hip in multiple testing positions: (1) extension, (2) neutral 0°, (3) flexion 30°, (4) flexion 90°, (5) flexion-adduction and internal rotation (FADIR), and (6) flexion-abduction and external rotation. Then the robot performed applicable internal and external rotations, recording the neutral path of motion until a 5-N·m of torque was reached in each rotational direction. Each hip then underwent a series of surgical stages (T-capsulotomy, cam resection, capsular repair) and was retested to reach 5 N·m of internal and external torque again after each stage. During the capsulotomy and cam resection stages, the initial intact hip's recorded path of motion was replayed to measure changes in resisted torque. RESULTS: Regarding changes in motion, external rotation increased substantially after capsulotomies, but internal rotation only further increased at flexion 90° (change +32%, P = .001, d = 0.58) and FADIR (change +33%, P < .001, d = 0.51) after cam resections. Capsular repair provided marginal restraint for internal rotation but restrained the external rotation compared with the capsulotomy stage. Regarding changes in torque, both internal and external torque resistance decreased after capsulotomy. Compared with the capsulotomy stage, cam resection further reduced internal torque resistance during flexion 90° (change -45%, P < .001, d = 0.98) and FADIR (change -37%, P = .003, d = 1.0), where the cam deformity accounted for 21% of the intact hip's torsional resistance in flexion 90° and 27% in FADIR. CONCLUSION: Although the capsule played a predominant role in joint constraint, the cam deformity provided 21% to 27% of the intact hip's resistance to torsional load in flexion and internal rotation. Resecting the cam deformity would remove this loading on the chondrolabral junction. CLINICAL RELEVANCE: These findings are the first to quantify the contribution of the cam deformity to resisting hip joint torsional loads and thus quantify the reduced loading on the chondrolabral complex that can be achieved after cam resection.


Assuntos
Impacto Femoroacetabular/fisiopatologia , Impacto Femoroacetabular/cirurgia , Articulação do Quadril/fisiopatologia , Fenômenos Biomecânicos , Cadáver , Impacto Femoroacetabular/patologia , Articulação do Quadril/patologia , Articulação do Quadril/cirurgia , Humanos , Cápsula Articular/fisiopatologia , Masculino , Pessoa de Meia-Idade , Movimento , Amplitude de Movimento Articular , Robótica , Rotação , Torque
11.
Med Eng Phys ; 63: 57-62, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30420164

RESUMO

The use of robotic systems combined with force sensing is emerging as the gold standard for in vitro biomechanical joint testing, due to the advantage of controlling all six degrees of freedom independently of one another. This paper describes a novel robotic platform and the experimental protocol used for hip joint testing. An experimental protocol implemented optical tracking and registration techniques in order to define the position of the hip joint centre of rotation (COR) in the coordinate system of the robot's end effector. The COR coordinates defined the origin of the task-related coordinate system used to control the robot, with a hybrid force/position law to simulate standard clinical tests. The axes of this frame were defined using the International Society of Biomechanics (ISB) anatomical coordinate system. Experiments were carried out on two cadaveric hip joint specimens using the robotic testing platform and a mechanical testing rig previously developed and described by our group. Simulated internal-external and adduction/abduction laxity tests were carried out with both systems and the resulting peak range of motion (ROM) was measured. Similarities and differences were observed in these experiments, which were used to highlight some of the limitations of conventional systems and the corresponding advantages of robotics, further emphasising their added value in vitro testing.


Assuntos
Articulação do Quadril , Teste de Materiais/instrumentação , Fenômenos Mecânicos , Robótica , Adulto , Fenômenos Biomecânicos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Rotação
12.
Med Eng Phys ; 62: 53-57, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30344070

RESUMO

Ankle sprains are the most common sports injury. Gaining a better understanding of ankle mechanics will help improve current treatments, enabling a better quality of life for patients following surgery. In this paper, the development of a robotic system for ankle joint testing is presented. It is composed of an industrial robot, a universal force/torque sensor and bespoke holders allowing high repositioning of specimens. A specimen preparation protocol that uses optical tracking to register the ankle specimens is used. A registration technique is applied to define and calibrate the task related coordinate system needed to control the joint's degrees of freedom and to simulate standardised, clinical ankle laxity tests. Experiments were carried out at different flexion angles using the robotic platform. Optical tracking was used to record the resulting motion of the tibia for every simulated test. The measurements from the optical tracker and the robot were compared and used to validate the system. These findings showed that the optical tracking measurements validate those from the robot for ankle joint testing with interclass coefficients equal to 0.991, 0.996 and 0.999 for the anterior-posterior translations, internal-external and inversion-eversion rotations.


Assuntos
Articulação do Tornozelo , Teste de Materiais/instrumentação , Fenômenos Mecânicos , Robótica , Adulto , Fenômenos Biomecânicos , Desenho de Equipamento , Feminino , Humanos , Masculino
13.
Am J Sports Med ; 45(13): 3081-3088, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28763623

RESUMO

BACKGROUND: Anterolateral tenodeses are increasingly popular in combination with intra-articular anterior cruciate ligament reconstructions. Despite the perception of risk of overconstraint and lateral osteoarthritis, evidence is lacking regarding the effect of graft tensioning on knee kinematics and intra-articular compartmental joint pressures. PURPOSE: To investigate tibiofemoral joint contact pressures and kinematics related to an anterolateral lesion and the effectiveness of a MacIntosh tenodesis in restoring these when varying (1) graft tension and (2) tibial rotation during graft fixation. STUDY DESIGN: Controlled laboratory study. METHODS: Eight fresh-frozen cadaveric knees were tested in a customized rig with femur fixed and tibia free to move from 0° to 90° of flexion. The quadriceps and iliotibial band were loaded by means of a weighted pulley system. At 30° intervals of knee flexion, tibiofemoral contact pressures were measured with a Tekscan sensor and tibiofemoral kinematics were recorded by use of an optical tracking system. The knee was tested intact and then with an anterolateral soft tissue transection. MacIntosh tenodeses were then tested in a randomized order with 20 N or 80 N of graft tension, each with the tibia held in neutral intact alignment or free to rotate. RESULTS: Tibial anterior translation and internal rotation were significantly increased and lateral contact pressures significantly reduced compared with the intact knee following anterolateral soft tissue cutting ( P < .05). Contact pressures were restored with fixed neutral tibial rotation combined with 20 N or 80 N of graft tension or by a free-hanging tibia with 20 N of graft tension (all P values > .5). Grafts tensioned with 80 N caused significant overconstraint both when the tibia was fixed and free hanging (all P values < .05). Increases in the lateral tibiofemoral contact pressures were also seen when the tibia was free hanging and 80 N was used for graft tension ( P < .05). CONCLUSION: Anterolateral soft tissue injury caused reduced lateral tibiofemoral contact pressures and altered tibiofemoral kinematics; these were restored with a MacIntosh procedure performed with 20 N of graft tension. If 80 N of graft tension was used, increased lateral contact pressures and overconstraint in internal rotation were seen. With the tibia free hanging, intact contact biomechanics were restored when 20 N of graft tension was applied, but 80 N of graft tension significantly increased lateral tibiofemoral pressures and overconstrained internal rotation. The kinematic and contact pressure effects were significantly correlated: Changes in tibial rotation caused by increased graft tension correlated with elevated lateral articular contact pressure. CLINICAL RELEVANCE: Controlling tibial position appears important when tensioning anterolateral tenodeses. However, the identified changes were subtle and may not be clinically significant in a fully loaded knee.


Assuntos
Articulação do Joelho/fisiologia , Articulação do Joelho/cirurgia , Tendões/cirurgia , Tenodese/métodos , Idoso , Reconstrução do Ligamento Cruzado Anterior/métodos , Fenômenos Biomecânicos , Cadáver , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pressão , Músculo Quadríceps/fisiologia , Músculo Quadríceps/cirurgia , Amplitude de Movimento Articular , Rotação
14.
Knee Surg Sports Traumatol Arthrosc ; 25(8): 2646-2655, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27026029

RESUMO

PURPOSE: The aim of this study was to quantify the medial soft tissue contributions to stability following constrained condylar (CC) total knee arthroplasty (TKA) and determine whether a medial reconstruction could restore stability to a soft tissue-deficient, CC-TKA knee. METHODS: Eight cadaveric knees were mounted in a robotic system and tested at 0°, 30°, 60°, and 90° of flexion with ±50 N anterior-posterior force, ±8 Nm varus-valgus, and ±5 Nm internal-external torque. The deep and superficial medial collateral ligaments (dMCL, sMCL) and posteromedial capsule (PMC) were transected and their relative contributions to stabilising the applied loads were quantified. After complete medial soft tissue transection, a reconstruction using a semitendinosus tendon graft was performed, and the effect on kinematic behaviour under equivocal conditions was measured. RESULTS: In the CC-TKA knee, the sMCL was the major medial restraint in anterior drawer, internal-external, and valgus rotation. No significant differences were found between the rotational laxities of the reconstructed knee to the pre-deficient state for the arc of motion examined. The relative contribution of the reconstruction was higher in valgus rotation at 60° than the sMCL; otherwise, the contribution of the reconstruction was similar to that of the sMCL. CONCLUSION: There is contention whether a CC-TKA can function with medial deficiency or more constraint is required. This work has shown that a CC-TKA may not provide enough stability with an absent sMCL. However, in such cases, combining the CC-TKA with a medial soft tissue reconstruction may be considered as an alternative to a hinged implant.


Assuntos
Artroplastia do Joelho/métodos , Tecido Conjuntivo/fisiologia , Tecido Conjuntivo/cirurgia , Articulação do Joelho/fisiologia , Articulação do Joelho/cirurgia , Idoso , Artroplastia do Joelho/efeitos adversos , Fenômenos Biomecânicos , Cadáver , Feminino , Humanos , Instabilidade Articular/fisiopatologia , Masculino , Pessoa de Meia-Idade , Amplitude de Movimento Articular , Rotação , Tendões/transplante , Torque
15.
Knee Surg Sports Traumatol Arthrosc ; 25(2): 559-568, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27637854

RESUMO

PURPOSE: Double-bundle (DB) anterior cruciate ligament (ACL) reconstruction may offer kinematic restoration superior to anatomic single bundle (SB), but it remains technically challenging. The femoral attachment site has the most effect on ACL graft isometry, so a simplified three-socket (3S) construct which still uses two sockets to cover the femoral ACL attachment is attractive. It was hypothesised that ACL reconstruction using three- and four-socket techniques would more closely restore native knee kinematics compared to anatomic two-socket (SB) surgery. METHODS: Nine cadaveric knees were used to evaluate the kinematics of ACL-intact, ACL-deficient, anatomic SB, three-socket, and DB arthroscopic ACL reconstructions. Suspensory fixation was used, and grafts were tensioned to match the anterior draw of the intact knee at 20°. A six-degree-of-freedom robotic system measured knee laxity under 90 N anterior tibial force and rotational laxity under 5 N-m torque. Combined moments were applied to simulate the pivot-shift subluxation: 4 N-m internal rotation and 8 N-m valgus. RESULTS: Significant differences between reconstructions were not found during anterior tibial loading, apart from SB being more lax than DB at 60° flexion. All reconstructions produced comparable laxity to the intact state, apart from SB at 60°. Significant differences between reconstructions were not found at any flexion angle during tibial internal/external applied torques. Under combined loading, DB produced significantly less laxity than SB constructs apart from anterior tibial translation at 0° and internal rotation at 45°. 3S and DB were comparable to the native knee throughout. CONCLUSION: Although 3S restored laxities to a similar extent to DB, significant superiority over SB surgery was not observed. Although statistically significant differences were found between SB and DB surgery during anterior tibial and simulated pivot-shift loading, both remained similar to the native knee. The clinical relevance is that this study did not support an ACL graft construct more complex than an anatomic single bundle.


Assuntos
Reconstrução do Ligamento Cruzado Anterior/métodos , Articulação do Joelho/fisiopatologia , Estresse Mecânico , Tendões/transplante , Idoso , Artroscopia , Fenômenos Biomecânicos/fisiologia , Cadáver , Feminino , Humanos , Articulação do Joelho/cirurgia , Masculino , Pessoa de Meia-Idade , Rotação
16.
J Orthop Res ; 35(9): 1902-1909, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-27859544

RESUMO

Little information is available to surgeons regarding how the lateral structures prevent instability in the replaced knee. The aim of this study was to quantify the lateral soft-tissue contributions to stability following cruciate-retaining total knee arthroplasty (CR TKA). Nine cadaveric knees were tested in a robotic system at full extension, 30°, 60°, and 90° flexion angles. In both native and CR implanted states, ±90 N anterior-posterior force, ±8 Nm varus-valgus, and ±5 Nm internal-external torque were applied. The anterolateral structures (ALS, including the iliotibial band), the lateral collateral ligament (LCL), the popliteus tendon complex (Pop T), and the posterior cruciate ligament (PCL) were transected and their relative contributions to stabilizing the applied loads were quantified. The LCL was found to be the primary restraint to varus laxity (an average 56% across all flexion angles), and was significant in internal-external rotational stability (28% and 26%, respectively) and anterior drawer (16%). The ALS restrained 25% of internal rotation, while the PCL was significant in posterior drawer only at 60° and 90° flexion. The Pop T was not found to be significant in any tests. Therefore, the LCL was confirmed as the major lateral structure in CR TKA stability throughout the arc of flexion and deficiency could present a complex rotational laxity that cannot be overcome by the other passive lateral structures or the PCL. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1902-1909, 2017.


Assuntos
Artroplastia do Joelho/métodos , Articulação do Joelho/fisiologia , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Instabilidade Articular , Masculino , Pessoa de Meia-Idade , Rotação
19.
Am J Sports Med ; 44(2): 345-54, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26657572

RESUMO

BACKGROUND: Anterolateral rotatory instability (ALRI) may result from combined anterior cruciate ligament (ACL) and lateral extra-articular lesions, but the roles of the anterolateral structures remain controversial. PURPOSE: To determine the contribution of each anterolateral structure and the ACL in restraining simulated clinical laxity in both the intact and ACL-deficient knee. STUDY DESIGN: Controlled laboratory study. METHODS: A total of 16 knees were tested using a 6 degrees of freedom robot with a universal force-moment sensor. The system automatically defined the path of unloaded flexion/extension. At different flexion angles, anterior-posterior, internal-external, and internal rotational laxity in response to a simulated pivot shift were tested. Eight ACL-intact and 8 ACL-deficient knees were tested. The kinematics of the intact/deficient knee was replayed after transecting/resecting each structure of interest; therefore, the decrease in force/torque reflected the contribution of the transected/resected structure in restraining laxity. Data were analyzed using repeated-measures analyses of variance and paired t tests. RESULTS: For anterior translation, the intact ACL was clearly the primary restraint. The iliotibial tract (ITT) resisted 31% ± 6% of the drawer force with the ACL cut at 30° of flexion; the anterolateral ligament (ALL) and anterolateral capsule resisted 4%. For internal rotation, the superficial layer of the ITT significantly restrained internal rotation at higher flexion angles: 56% ± 20% and 56% ± 16% at 90° for the ACL-intact and ACL-deficient groups, respectively. The deep layer of the ITT restrained internal rotation at lower flexion angles, with 26% ± 9% and 33% ± 12% at 30° for the ACL-intact and ACL-deficient groups, respectively. The other anterolateral structures provided no significant contribution. During the pivot-shift test, the ITT provided 72% ± 14% of the restraint at 45° for the ACL-deficient group. The ACL and other anterolateral structures made only a small contribution in restraining the pivot shift. CONCLUSION: The ALL and anterolateral capsule had a minor role in restraining internal rotation; the ITT was the primary restraint at 30° to 90° of flexion. CLINICAL RELEVANCE: The ITT showed large contributions in restraining anterior subluxation of the lateral tibial plateau and tibial internal rotation, which constitute pathological laxity in ALRI. In cases with ALRI, an ITT injury should be suspected and kept in mind if an extra-articular procedure is performed.


Assuntos
Ligamento Cruzado Anterior/patologia , Instabilidade Articular/patologia , Articulação do Joelho/patologia , Tíbia/patologia , Idoso , Idoso de 80 Anos ou mais , Lesões do Ligamento Cruzado Anterior , Fenômenos Biomecânicos , Cadáver , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Amplitude de Movimento Articular , Rotação , Torque
20.
Bioinspir Biomim ; 9(1): 016010, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24451164

RESUMO

Inspired by biological swimmers such as fish, a robot composed of a rigid head, a compliant body and a rigid caudal fin was built. It has the geometrical properties of a subcarangiform swimmer of the same size. The head houses a servo-motor which actuates the compliant body and the caudal fin. It achieves this by applying a concentrated moment on a point near the compliant body base. In this paper, the dynamics of the compliant body driving the robotic fish is modelled and experimentally validated. Lighthill's elongated body theory is used to define the hydrodynamic forces on the compliant part and Rayleigh proportional damping is used to model damping. Based on the assumed modes method, an energetic approach is used to write the equations of motion of the compliant body and to compute the relationship between the applied moment and the resulting lateral deflections. Experiments on the compliant body were carried out to validate the model predictions. The results showed that a good match was achieved between the measured and predicted deformations. A discussion of the swimming motions between the real fish and the robot is presented.


Assuntos
Nadadeiras de Animais/fisiologia , Biomimética/instrumentação , Peixes/fisiologia , Modelos Biológicos , Robótica/instrumentação , Navios/instrumentação , Natação/fisiologia , Animais , Simulação por Computador , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Reologia/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...