Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 13(6): 7237-7259, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22837691

RESUMO

Plant-fungi and plant-oomycete interactions have been studied at the proteomic level for many decades. However, it is only in the last few years, with the development of new approaches, combined with bioinformatics data mining tools, gel staining, and analytical instruments, such as 2D-PAGE/nanoflow-LC-MS/MS, that proteomic approaches thrived. They allow screening and analysis, at the sub-cellular level, of peptides and proteins resulting from plants, pathogens, and their interactions. They also highlight post-translational modifications to proteins, e.g., glycosylation, phosphorylation or cleavage. However, many challenges are encountered during in planta studies aimed at stressing details of host defenses and fungal and oomycete pathogenicity determinants during interactions. Dissecting the mechanisms of such host-pathogen systems, including pathogen counter-defenses, will ensure a step ahead towards understanding current outcomes of interactions from a co-evolutionary point of view, and eventually move a step forward in building more durable strategies for management of diseases caused by fungi and oomycetes. Unraveling intricacies of more complex proteomic interactions that involve additional microbes, i.e., PGPRs and symbiotic fungi, which strengthen plant defenses will generate valuable information on how pathosystems actually function in nature, and thereby provide clues to solving disease problems that engender major losses in crops every year.


Assuntos
Proteínas Fúngicas/metabolismo , Fungos/fisiologia , Interações Hospedeiro-Patógeno/fisiologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Plantas , Oomicetos/metabolismo , Plantas/metabolismo , Plantas/microbiologia
2.
J Pathog ; 2011: 280481, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22567327

RESUMO

Histochemical and ultrastructural analyses were carried out to assess structural and biochemical changes in date palm roots pretreated with salicylic acid (SA) then inoculated with Fusarium oxysporum f. sp. albedinis (Foa). Flavonoids, induced proteins, and peroxidase activity were revealed in root tissues of SA-treated plants after challenge by Foa. These reactions were closely associated with plant resistance to Foa. Host reactions induced after inoculation of SA-treated plants with Foa included the plugging of intercellular spaces, the deposition of electron-dense materials at the sites of pathogen penetration, and several damages to fungal cells. On the other hand, untreated inoculated plants showed marked cell wall degradation and total cytoplasm disorganization, indicating the protective effects provided by salicylic acid in treated plants.

3.
Mar Drugs ; 8(4): 968-87, 2010 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-20479963

RESUMO

Chitin and chitosan are naturally-occurring compounds that have potential in agriculture with regard to controlling plant diseases. These molecules were shown to display toxicity and inhibit fungal growth and development. They were reported to be active against viruses, bacteria and other pests. Fragments from chitin and chitosan are known to have eliciting activities leading to a variety of defense responses in host plants in response to microbial infections, including the accumulation of phytoalexins, pathogen-related (PR) proteins and proteinase inhibitors, lignin synthesis, and callose formation. Based on these and other proprieties that help strengthen host plant defenses, interest has been growing in using them in agricultural systems to reduce the negative impact of diseases on yield and quality of crops. This review recapitulates the properties and uses of chitin, chitosan, and their derivatives, and will focus on their applications and mechanisms of action during plant-pathogen interactions.


Assuntos
Quitina/farmacologia , Quitosana/farmacologia , Doenças das Plantas/prevenção & controle , Agricultura/métodos , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Quitina/química , Quitosana/química , Produtos Agrícolas/microbiologia , Doenças das Plantas/microbiologia , Plantas/microbiologia
4.
Mol Plant Microbe Interact ; 19(5): 550-6, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16673942

RESUMO

Fusarium spp. are ubiquitous fungi found in soil worldwide as both pathogenic and nonpathogenic strains. The signals leading to disease or the absence of disease are poorly understood. We recently showed that fusaric acid (FA), a nonspecific toxin produced by most Fusarium spp., could elicit various plant defense responses at 100 nM without toxic effect. In this study, we checked for the effect of FA on root and root hairs, probable first site of contact between the fungi and the host. Large FA concentrations reduce root and root-hair growth and induce a rapid transient membrane hyperpolarization, followed by a large depolarization, due to the inhibition of H(+)-ATPase currents. Nanomolar concentrations of FA induced only an early transient membrane hyperpolarization of root hairs compatible with the induction of a signal transduction pathway. FA at 10(-7) M failed to induce salicylic acid- and jasmonic acid/ethylene-dependent defense-related genes but inhibited the germination of the angiosperm parasite Orobanche ramosa in contact of FA-pretreated Arabidopsis thaliana seedlings. These data suggest that FA at nontoxic concentrations could activate signal transduction components necessary for plant-defense responses that could contribute to biocontrol activity of Fusarium spp.


Assuntos
Arabidopsis/efeitos dos fármacos , Ácido Fusárico , Orobanche , Controle Biológico de Vetores , Expressão Gênica , Germinação , Orobanche/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Plântula/efeitos dos fármacos , Transdução de Sinais
5.
C R Biol ; 328(8): 732-44, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16125651

RESUMO

Date palm (Phoenix dactylifera L.) is qualified as a 'tree' of great ecological and socio-economical importance in desert oases. Unfortunately, it is being decimated, especially in Morocco and Algeria, by a fusariosis wilt called bayoud and caused by Fusarium oxysporum f. sp. albedinis (Fao). Controlling this disease requires the implementation of an integrated management program. Breeding for resistance is one of the most promising component strategies of this program. Few naturally resistant cultivars with a mediocre fruit quality (dates) are known. Conventional and non-conventional methods are under development and have to use the simplest and easiest methods to screen for resistant individuals. The use of pathogen toxins as selective agents at the tissue culture step might be a source of variability that can lead to the selection of individuals with suitable levels of resistance to the toxin and/or to the pathogen among the genetic material available. Foa produces toxins such as fusaric, succinic, 3-phenyl lactic acids and their derivatives, marasmins and peptidic toxins. These toxins can be used bulked or separately as selective agents. The aim of this contribution was to give a brief overview on toxins and their use as a mean to select resistant lines and to initiate a discussion about the potential use of this approach for the date palm-Foa pathosystem. This review does not pretend to be comprehensive or exhaustive and was prepared mainly to highlight the potential use of Foa toxins for selecting date palm individuals with a suitable resistance level to bayoud using toxin-based selective media.


Assuntos
Arecaceae/microbiologia , Fusarium/patogenicidade , Micotoxinas/toxicidade , Arecaceae/efeitos dos fármacos , Interações Hospedeiro-Parasita , Imunidade Inata , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...