Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 260(Pt 2): 129389, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38232882

RESUMO

Herein, a new hybrid magnetic core@shell biocomposite was prepared based on an alginate-bentonite core and a chitosan shell layer (mAB@Cs) where magnetic Fe3O4 NPs (50.7 nm) were in-situ generated on the surface via a simple non-thermal co-precipitation approach. The biocomposite has a high ability to magnetically separate and remove organic (ciprofloxacin (CPX)) and seven toxic inorganic (Cu2+, Cd2+, Co2+, Ni2+, Pb2+, Zn2+, and Hg2+) contaminants from simulated wastewater. Experimental results showed a CPX monolayer chemisorption with a Langmuir maximum adsorption capacity of 264.7 mg/g, maintained effectiveness up to the fifth cycle, and high removal rates of heavy metals ranging from 74.89 % to 99.86 % corresponding to adsorption capacities ranging from 12 to 20 mg/g. For a more accurate evaluation, the biocomposite was tested on a real urban wastewater sample (RWW) and it has manifested a noteworthy efficiency in removing a mixture of inorganic pollutants in terms of potassium K+ and orthophosphate phosphorous P-PO43-, and organic matter in terms of biological oxygen demand (BOD) and chemical oxygen demand (COD) with 46 %, 90 %, 84 %, and 64 % removal efficiencies, respectively. On top of this, a high inactivation rate of E. coli of the order of 96 % was recorded, making the prepared magnetic biocomposite adept for the simultaneous removal of emergent wastewater pollutants, from organic, inorganic, to pathogen microorganisms.


Assuntos
Quitosana , Poluentes Ambientais , Metais Pesados , Poluentes Químicos da Água , Águas Residuárias , Quitosana/química , Alginatos , Escherichia coli , Metais Pesados/química , Adsorção , Fenômenos Magnéticos , Poluentes Químicos da Água/química , Cinética , Concentração de Íons de Hidrogênio
2.
Front Microbiol ; 13: 881442, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35694314

RESUMO

The improvement of plant growth and yield becomes crucial to feed the rising world population, especially in harsh conditions, drought, salt stress, lack of nutrition, and many other challenges. To cope with these stresses, plants developed an adaptation strategy (mycorrhiza), which is an efficient way to reinforce their growth and resistance. For this purpose, we studied the influence of mycorrhizal fungi isolated from a natural rock phosphate mine in the vicinity of some native plants and agricultural soil to assess their capacity in increasing the growth, nutritional profile improvement, and biochemical parameters in the inoculated wheat plants. Results showed a high diversity of isolated arbuscular mycorrhizal fungi (AMF) spores in the agricultural soil, and less diversity in the natural phosphate samples, where three main genera were identified: glomus, gigaspora, and acaulospora. The chlorophyll content increased by 116% in the native inoculum (NM) flowed by Glomus sp2 from agricultural soil (98%) compared to non-mycorrhized plants, which significantly impact the growth and plant biomass (an increase of 90 and 73%, respectively). The same rate of change was shown on total phenolic compounds with an increase of 64% in the plants inoculated with Glomus sp2 in the presence of TSP, compared to the non-mycorrhized plants. In conclusion, the inoculation of wheat plants with AMF spores improved plants' growth via the increase in the density of the root system, which implies better assimilation of nutrients, especially in mycorrhizal plants with phosphorus fertilization regime, triple superphosphate (TSP) or natural rock phosphate (RP). This improvement of the physiological and biochemical parameters (chlorophyll contents and phenolic compound) of the treated plants reflected the positive impact of AMF, especially those originating from RP. AMF in phosphate mine could be an important source of inoculum to improve plant nutrient efficiency with the direct use of RP as fertilizer.

3.
Int J Phytoremediation ; 24(1): 34-46, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34000939

RESUMO

Microalgae have been studied for their potential of wastewater treatment as well as a promising source for biodiesel production. This study investigates the potential of microalgae to remove nutrients from domestic wastewater (DWW) while producing lipids-rich biomass for biodiesel production. Eight microalgae were cultivated in (DWW) to evaluate their nutrients removal capacity and biomass production. Total phosphorus (TP) of DWW reduced from 2 mg L-1 to 0.02 mg L-1 with the treatment efficiency of 99.15% and the highest performance was noted in Chlamydomonas reinhardtii (C. reinhardtii). For total nitrogen (TN), treatment efficiency climbed to 99.07%. It is reduced from 18.35 to 0.17 mg L-1 recorded in C. reinhardtii and Chlorella pyrenoidosa (C. pyrenoidosa). On the other hand, all microalgae showed a high lipids-rich biomass in wastewater compared to BG11. The highest lipid content was 36.93% noted in Chlorella sorokiniana (C. sorokiniana). Fatty acids methyl ester (FAME) profiles showed a high content of palmitic C16:0, oleic C18:1 and stearic acids C18:0 in studied microalgae strains. In summary, microalgae envisage its potential application in integrated wastewater treatment and biodiesel production. In perspective, the authors focus on the validation of this bioprocess in pilot scale. Furthermore, the use of microalgae for other applications such CO2 biosequestration and added value products. Novelty statement: The present study investigates the potential of Moroccan microalgae as candidates to wastewater remediation and high biomass production with high lipid rate for biodiesel production.


Assuntos
Chlorella , Microalgas , Purificação da Água , Biodegradação Ambiental , Biocombustíveis , Biomassa , Nitrogênio/análise , Águas Residuárias
4.
Curr Microbiol ; 78(1): 86-94, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33104853

RESUMO

This study aims to develop new formulations for microbial fertilizers Pseudomonas fluorescens Ms-01 (Pf) and Azosprillum brasilense DSM1690 (Ab) using two kinds of clay minerals. The studied formulations were prepared as hybrid materials based on halloysite and alginate [Ha-Ag] or montmorillonite and alginate polymers [Mt-Ag] and were applied to the bacterial strains to develop low cost, efficient, and slow-release capsules. Their efficiency was evaluated in comparison with alginate [Ag] as the control. The produced capsules were spherical in shape and were chemically and physically characterized and further analyzed for their swelling ratios, soil biodegradability, release kinetics of microbial cells, and their survival stability over 3 months of storage under different conditions (room temperature vs 4 °C). The effect of the capsules on the growth of wheat plants was also investigated. Results showed that both formulations were able to preserve bacterial survival which reached 14.8 log CFU g-1 after 3 months storage in the halloysite formulation. The swelling ratios were ranged between 61.5 ± 1.35% and 36.5 ± 5% for the montmorillonite and the halloysite formulations, respectively. The release kinetics revealed the slow-release capacity of the capsules mainly with the halloysite formulation which significantly released bacterial cells after 15 days of incubation in saline water (15.24 log CFU mL-1). The application of the capsules to wheat plants significantly increased root and shoot biomasses and nitrogen content in the roots. In conclusion, halloysite minerals seem to be more adapted as additive to alginate in microbial encapsulation.


Assuntos
Alginatos , Fertilizantes , Bentonita , Cápsulas , Argila
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 242: 118736, 2020 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-32759034

RESUMO

The estimation of soil phosphorus is essential for agricultural activity. The laboratory chemical analysis techniques are expensive and labor-intensive. In the last decade, near-infrared spectroscopy has been become used as an alternative for soil attributes analysis. It is a rapid technique, and inexpensive relatively. However, this technique requires a calibration step using different machine learning and chemometrics tools. This study aims to develop predictive models for total soil phosphorus and extractable phosphorus by the Olson method (P-Olson) using three regression methods, namely partial least squares (PLS), regression support vector machine (RSVM) and backward propagation neural network (BPNN), combined with a proposed variable selection algorithm (PARtest) and a genetic algorithm PLS (GA-PAS). Also, it aims to investigate the effect of the texture on the accuracy of the prediction. The results show that PARtest combined with PBNN outperform the other used algorithms with an R2t = 0.86, RMSEt = 1104 mg kg-1, and RPD = 3.23 for the TP. For P-Olson the RSVM coupled with GA-PLS outperforms all other methods with an R2t = 0.77, RMSEt = 20.09 mg kg-1, and RPD = 1.90. The use of hierarchical ascendant clustering (HAC) helps to reduce the heterogeneity of soil and helps to increase the quality of prediction. The obtained results show that the models for clayey and loamy soils yielded an excellent prediction quality with an R2t = 0.88, RMSEt = 857.33 mg kg-1, and RPD = 4.10 using BPNN with PARtest for TP. Furthermore, an R2 = 0.83 RMSE = 8.30 mg kg-1, RPD = 11.00 3.11using RSVM with GA-PLS for P-Olson. Thus, the texture has a significant effect on the prediction accuracy.

6.
ScientificWorldJournal ; 2018: 6834725, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30622443

RESUMO

Nitrogen stress increases lipids content in microalgae, the main feedstock for algal biodiesel. Sodium tungstate was used in this study to implement nitrogen stress by inhibiting nitrate reductase (NR) in Dunaliella tertiolecta. The reduction of NR activity was accompanied by reduction of chlorophyll and accumulation of lipids. One-stage and two-stage culture strategies were compared. One-stage culture raised total lipids from 18% (control) to 39% (w: w); however, two-stage culture raised lipids to 50% in which neutral lipids were enhanced 2.14 times. To assess the quality of biodiesel produced, fatty acid methyl esters (FAME) composition was studied. It showed a slight variation of unsaturation. In addition, some physical proprieties of biodiesel were estimated and showed that higher heating values were improved by tungstate treatment. In this study, we tried to shed light on some biological impact of NR inhibition in microalgae cells using sodium tungstate which could be exploited in the improvement of biodiesel production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...