Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(6): 3129-3136, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38288664

RESUMO

Combining nuclear magnetic resonance (NMR), X-ray absorption spectroscopy near-edge structure (XANES), and density functional theory (DFT), we elucidate the structures of tungstate and molybdate with sugars of interest in the conversion of biomass to platform chemicals (glucose, mannose, and erythrose). We highlight a number of complexes, including one nearly isostructural structure that is formed with each metal-sugar combination. We also emphasize the singular reactivity of erythrose that undergoes retro-aldolization at room temperature.

2.
Inorg Chem ; 62(19): 7545-7556, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37130307

RESUMO

The control of metal-sugar complexes speciation in solution is crucial in an energy transition context. Herein, the formation of tungstate-mannose complexes is unraveled in aqueous solution using a multitechnique experimental and theoretical approach. 13C nuclear magnetic resonance (NMR), as well as 13C-1H and 1H-1H correlation spectra, analyzed in the light of coordination-induced shift method and conformation analysis, were employed to characterize the structure of the sugar involved in the complexes. X-ray absorption near edge structure spectroscopy was performed to provide relevant information about the metal electronic and coordination environment. The calculation of 13C NMR chemical shifts for a series of tungstate-mannose complexes using density functional theory (DFT) is a key to identify the appropriate structure among several candidates. Furthermore, a parametric study based on several relevant parameters, namely, pH and tungstate concentration, was carried out to look over the change of the nature and concentrations of the complexes. Two series of complexes were detected, in which the metallic core is either in a ditungstate or a monotungstate form. With respect to previous proposals, we identify two new species. Dinuclear complexes involve both α- and ß-furanose forms chelating the metallic center in a tetradentate fashion. A hydrate form chelating a ditungstate core is also revealed. One monotungstate complex appears at high pH, in which a tetrahedral tungstate center is bound to α-mannofuranose through a monodentate site at the second deprotonated hydroxyl group. This unequalled level of knowledge opens the door to structure-reactivity relationships.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...