Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Cell Fact ; 22(1): 78, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37085834

RESUMO

BACKGROUND: Metal oxide nanoparticles (NPs) are becoming valuable due to their novel applications. The green synthesis of TiO2 NPs is more popular as a flexible and eco-friendly method compared to traditional chemical synthesis methods. TiO2 NPs are the most commonly used semiconductor in dye-sensitized solar cells (DSSCs). RESULTS: The biogenic TiO2 NPs were produced extracellularly by the marine halophilic bacterium Halomonas sp. RAM2. Response surface methodology (RSM) was used to optimize the biosynthesis process, resulting in a starting TiO2 concentration of 0.031 M and a pH of 5 for 92 min (⁓15 nm). TiO2 NPs were well-characterized after the calcination process at different temperatures of 500, 600, 700 and 800 °C. Anatase TiO2 NPs (calcined at 500 °C) with a smaller surface area and a wider bandgap were nominated for use in natural dye-sensitized solar cells (NDSSCs). The natural dye used as a photosensitizer is a mixture of three carotenoids extracted from the marine bacterium Kocuria sp. RAM1. NDSSCs were evaluated under standard illumination. After optimization of the counter electrode, NDSSCBio(10) (10 layers) demonstrated the highest photoelectric conversion efficiency (η) of 0.44%, which was almost as good as NDSSCP25 (0.55%). CONCLUSION: The obtained results confirmed the successful green synthesis of TiO2 NPs and suggested a novel use in combination with bacterial carotenoids in DSSC fabrication, which represents an initial step for further efficiency enhancement studies.


Assuntos
Halomonas , Nanopartículas Metálicas , Energia Solar , Titânio , Corantes
2.
Sci Rep ; 12(1): 11278, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35789198

RESUMO

The aim of this work is to fabricate supercapacitor electrode based on poly (3-hexyl-thiophene-2, 5-diyl) (P3HT) and single-walled carbon nanotubes (SWCNTs) nanocomposites with different ratios onto a graphite sheet as a substrate with a wide voltage window in nonaqueous electrolyte. Structural, morphological and electrochemical properties of the prepared nanocomposites of P3HT/SWCNTs were studied and discussed. The electrochemical properties included cyclic voltammetry (CV), galvanostatic charging-discharging (GCD), and electrochemical impedance spectroscopy (EIS) were investigated. The obtained results indicated that P3HT/SWCNTs nanocomposite possesses higher specific capacitance than that present in its individual component. The high electrochemical performance of the nanocomposite was due to formation of microporous structure which facilitates ions diffusion and electrolyte penetration in these pores. The morphological micrographs of the purified SWCNTs had buckypaper structure while the photomicrographs of P3HT/SWCNTs showed that SWCNTs appear behind and front of the P3HT nanospheres. The specific capacitance of 50% SWCNTs at 0.5 Ag-1 was found to be 245.8 Fg-1 compared with that of pure P3HT of 160.5 Fg-1.

3.
Sci Rep ; 12(1): 3611, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35246573

RESUMO

An electrochemical deposition technique was used to fabricate polypyrrole (Ppy)/NiO nanocomposite electrodes for supercapacitors. The nanocomposite electrodes were characterized and investigated by Fourier transform infrared spectroscopy (FTIR), X-ray Diffraction (XRD), scanning electron microscopy (SEM), cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS). The performance of supercapacitor electrodes of Ppy/NiO nanocomposite was enhanced compared with pristine Ppy electrode. It was found that the Ppy/NiO electrode electrodeposited at 4 A/cm-2 demonstrated the highest specific capacitance of 679 Fg-1 at 1 Ag-1 with an energy density of 94.4 Wh kg-1 and power density of 500.74 W kg-1. Capacitance retention of 83.9% of its initial capacitance after 1000 cycles at 1 Ag-1 was obtained. The high electrochemical performance of Ppy/NiO was due to the synergistic effect of NiO and Ppy, where a rich pores network-like structure made the electrolyte ions more easily accessible for Faradic reactions. This work provided a simple approach for preparing organic-inorganic composite materials as high-performance electrode materials for electrochemical supercapacitors.

4.
ACS Omega ; 6(36): 23090-23099, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34549110

RESUMO

In this work, we produced high yield quantized nitrogen-doped graphene nanodiscs from waste tires via a one-step process under high pressure and temperature using a homemade stainless steel reactor without using any chemical additives. Reaction temperature played a vital role in the preparation process. By increasing the temperature to a level between 600 and 1100 °C, the carbon atoms rearranged themselves to build a mixed graphene structure of nanodiscs and quantum dots. The obtained graphene exhibits excellent capacitance and long life cycle stability as an electrode in supercapacitor devices. The specific capacitance rose to 161.24 F/g with a high power density of 733.3 W/kg, and the energy density reached 27.1 Wh/kg. The finding of this work is not only to provide a solution to get rid of hazardous materials but also to give awareness of turning these hazardous materials into a cost-effective and economical nanomaterial; in another, this approach sheds light on the promising power uses of waste.

5.
ACS Omega ; 6(20): 13077-13086, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34056457

RESUMO

In this article, we investigate the application of polythiophene (PT), polythiophene with embedded gold nanoparticles (PT-Au), and polythiophene with embedded palladium nanoparticles (PT-Pd) via the spin coating technique on the rear contact of single-crystalline silicon solar cells. Several layers of coating (up to four layers) were applied, followed by a simple heat treatment at 70 °C for 30 min. The morphology, particles distribution in the polymer, and crystal structure of the colloid PT, PT-Au, and PT-Pd were characterized by transmission electron microscopy (TEM). Optical characteristics of the polymer and nanoparticles embedded in the polymers exhibited high absorption in the near-UV region, and a plasmonic peak at around 580 nm is observed. The calculated energy gap ranged from 2.65 eV (PT-Pd 5%) to 2.9 eV (PT) and 3.05 eV (PT-Au 5%). Scanning electron microscopy (SEM) images of the successive layers show an increase in the density and thickness of the PT particles with increasing number of coating layers, up to 12 µm for four layers of PT. Devices were characterized under dark conditions exhibiting variations in the ideality factor and series and shunt resistances with different coating layers. The silicon solar cells were characterized by measuring quantum efficiency, photoconversion efficiency (PCE), fill factor, and series and shunt resistances before and after coating. The coating was found to reduce the series resistance and to increase the efficiency of the cell by up to 7.25% for the PT-Au5% layers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...