Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 12817, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35896577

RESUMO

High-grade calcium aluminate cement (CAC) has been successfully synthesized from municipal alumina waste and limestone under mild reaction conditions. Mineralogical composition and microstructure of the sintered mixes were investigated using X-ray diffraction and FESEM; valuable cementing phases such as CA, CA2, and C12A7 were observed in addition to the C3A phase that was detected in the mixes with high CaCO3 content. Mix CA60 containing 60 wt% alumina waste has achieved the best sinterability (less than 1 vol% porosity) and the highest densification (~ 2.65 g/cm3 bulk density) at 1450 °C. Densification, cold-crushing strength (CCS), and microstructure of the hydrated cement samples (From Mix CA60) were investigated. The cast cement specimens revealed better density and CCS characteristics (63.1 and 74 MPa at 7 and 28 days, respectively) in comparison with the commercial cement. Conventional castables (5 × 5 × 5 cm3) were prepared from mixtures composed of 15 wt% cement and 85 wt% aggregates (40% Al2O3), where CA60 and commercial cement were used to compare the effect of the manufactured CA60 cement with the commercial one. The castables prepared with CA60 cement have shown a higher strength at 110 °C with 4.5 MPa when compared to the commercial CAC at the same temperature (1.8 MPa). Accordingly, this study contributes not only to preserving the environment from the accumulation of industrial wastes but also to valorizing and adding value to these wastes.

2.
J Environ Manage ; 183: 121-125, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27589920

RESUMO

In this work, nanoscale single crystalline γ- and α-alumina powders have been successfully prepared from aluminum foil waste precursor via co-precipitation method using NH4OH as a precipitant. The obtained gel after co-precipitation treatment, was calcined at different temperatures (500,700, 900, 1050, 1100, 1300 and 1500 °C) and the products were characterized by XRD, FTIR and HRTEM. The results revealed that nano-γ-Al2O3 was fully transformed to nanometer-sized α-Al2O3 (36-200 nm) after annealing at temperatures as low as 1100 °C.The thermally preheated powder at 500 °C was further pressed under 95 MPa by the uniaxial press and the obtained bodies were found to have98.82% of the theoretical density, 1.18% porosity and 708 MPa compressive strength, when sintered at temperatures as low as 1600 °C without using any sintering aid. These excellent results proved that this work will contribute to finding a commercial source for preparing sub 100 nm α-alumina through the secondary resources management and even more so to synthesizing strong α-Al2O3 bodies which are promising in terms of their structure and compression. The α-Al2O3 bodies synthesized by the present work could be used as a feedstock for fabrication of various kinds of functional and structural materials that are extensively used in high tech.


Assuntos
Óxido de Alumínio/química , Alumínio , Cerâmica/química , Resíduos , Temperatura Baixa , Temperatura Alta , Microscopia Eletrônica de Transmissão , Porosidade , Pós , Eliminação de Resíduos/métodos , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...