Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 11(12)2019 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-31861131

RESUMO

Triple-negative breast cancers (TNBCs), which lack specific targeted therapy options, evolve into highly chemo-resistant tumors that metastasize to multiple organs simultaneously. We have previously shown that TNBCs maintain an activated WNT10B-driven network that drives metastasis. Pharmacologic inhibition by ICG-001 decreases ß-catenin-mediated proliferation of multiple TNBC cell lines and TNBC patient-derived xenograft (PDX)-derived cell lines. In vitro, ICG-001 was effective in combination with the conventional cytotoxic chemotherapeutics, cisplatin and doxorubicin, to decrease the proliferation of MDA-MB-231 cells. In contrast, in TNBC PDX-derived cells doxorubicin plus ICG-001 was synergistic, while pairing with cisplatin was not as effective. Mechanistically, cytotoxicity induced by doxorubicin, but not cisplatin, with ICG-001 was associated with increased cleavage of PARP-1 in the PDX cells only. In vivo, MDA-MB-231 and TNBC PDX orthotopic primary tumors initiated de novo simultaneous multi-organ metastases, including bone metastases. WNT monotherapy blocked multi-organ metastases as measured by luciferase imaging and histology. The loss of expression of the WNT10B/ß-catenin direct targets HMGA2, EZH2, AXIN2, MYC, PCNA, CCND1, transcriptionally active ß-catenin, SNAIL and vimentin both in vitro and in vivo in the primary tumors mechanistically explains loss of multi-organ metastases. WNT monotherapy induced VEGFA expression in both tumor model systems, whereas increased CD31 was observed only in the MDA-MB-231 tumors. Moreover, WNT-inhibition sensitized the anticancer response of the TNBC PDX model to doxorubicin, preventing simultaneous metastases to the liver and ovaries, as well as to bone. Our data demonstrate that WNT-inhibition sensitizes TNBC to anthracyclines and treats multi-organ metastases of TNBC.

2.
J Med Chem ; 62(15): 6925-6940, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31294974

RESUMO

The natural product colletoic acid (CA) is a selective inhibitor of 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1), which primarily converts cortisone to the active glucocorticoid (GC) cortisol. Here, CA's mode of action and its potential as a chemical tool to study intracellular GC signaling in adipogenesis are disclosed. 11ß-HSD1 biochemical studies of CA indicated that its functional groups at C-1, C-4, and C-9 were important for enzymatic activity; an X-ray crystal structure of 11ß-HSD1 bound to CA at 2.6 Å resolution revealed the nature of those interactions, namely, a close-fitting and favorable interactions between the constrained CA spirocycle and the catalytic triad of 11ß-HSD1. Structure-activity relationship studies culminated in the development of a superior CA analogue with improved target engagement. Furthermore, we demonstrate that CA selectively inhibits preadipocyte differentiation through 11ß-HSD1 inhibition, suppressing other relevant key drivers of adipogenesis (i.e., PPARγ, PGC-1α), presumably by negatively modulating the glucocorticoid signaling pathway. The combined findings provide an in-depth evaluation of the mode of action of CA and its potential as a tool compound to study adipose tissue and its implications in metabolic syndrome.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/química , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Sesquiterpenos/química , Sesquiterpenos/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/antagonistas & inibidores , Células 3T3-L1 , Animais , Cristalografia por Raios X/métodos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Células HEK293 , Células Hep G2 , Humanos , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estrutura Terciária de Proteína , Sesquiterpenos/farmacologia
3.
Stem Cell Rev Rep ; 15(1): 67-81, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30324358

RESUMO

The potential of human mesenchymal stromal/stem cells (MSCs) including oral stem cells (OSCs) as a cell source to derive functional neurons has been inconclusive. Here we tested a number of human OSCs for their neurogenic potential compared to non-OSCs and employed various neurogenic induction methods. OSCs including dental pulp stem cells (DPSCs), gingiva-derived mesenchymal stem cells (GMSCs), stem cells from apical papilla and non-OSCs including bone marrow MSCs (BMMSCs), foreskin fibroblasts and dermal fibroblasts using non-neurosphere-mediated or neurosphere-mediated methods to guide them toward neuronal lineages. Cells were subjected to RT-qPCR, immunocytofluorescence to detect the expression of neurogenic genes or electrophysiological analysis at final stage of maturation. We found that induced DPSCs and GMSCs overall appeared to be more neurogenic compared to other cells either morphologically or levels of neurogenic gene expression. Nonetheless, of all the neural induction methods employed, only one neurosphere-mediated method yielded electrophysiological properties of functional neurons. Under this method, cells expressed increased neural stem cell markers, nestin and SOX1, in the first phase of differentiation. Neuronal-like cells expressed ßIII-tubulin, CNPase, GFAP, MAP-2, NFM, pan-Nav, GAD67, Nav1.6, NF1, NSE, PSD95, and synapsin after the second phase of differentiation to maturity. Electrophysiological experiments revealed that 8.3% of DPSC-derived neuronal cells and 21.2% of GMSC-derived neuronal cells displayed action potential, although no spontaneous excitatory/inhibitory postsynaptic action potential was observed. We conclude that DPSCs and GMSCs have the potential to become neuronal cells in vitro, therefore, these cells may be used as a source for neural regeneration.


Assuntos
Potenciais de Ação/fisiologia , Diferenciação Celular , Polpa Dentária/citologia , Gengiva/citologia , Células-Tronco Mesenquimais/citologia , Neurogênese , Adolescente , Adulto , Células-Tronco Adultas/citologia , Diferenciação Celular/genética , Regulação da Expressão Gênica , Humanos , Células-Tronco Neurais/citologia , Neurogênese/genética , Neurônios/citologia , Esferoides Celulares/citologia , Adulto Jovem
4.
Cancer Res ; 79(5): 982-993, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30563890

RESUMO

Triple-negative breast cancer (TNBC) commonly develops resistance to chemotherapy, yet markers predictive of chemoresistance in this disease are lacking. Here, we define WNT10B-dependent biomarkers for ß-CATENIN/HMGA2/EZH2 signaling predictive of reduced relapse-free survival. Concordant expression of HMGA2 and EZH2 proteins is observed in MMTV-Wnt10bLacZ transgenic mice during metastasis, and Hmga2 haploinsufficiency decreased EZH2 protein expression, repressing lung metastasis. A novel autoregulatory loop interdependent on HMGA2 and EZH2 expression is essential for ß-CATENIN/TCF-4/LEF-1 transcription. Mechanistically, both HMGA2 and EZH2 displaced Groucho/TLE1 from TCF-4 and served as gatekeepers for K49 acetylation on ß-CATENIN, which is essential for transcription. In addition, we discovered that HMGA2-EZH2 interacts with the PRC2 complex. Absence of HMGA2 or EZH2 expression or chemical inhibition of Wnt signaling in a chemoresistant patient-derived xenograft (PDX) model of TNBC abolished visceral metastasis, repressing AXIN2, MYC, EZH2, and HMGA2 expression in vivo. Combinatorial therapy of a WNT inhibitor with doxorubicin synergistically activated apoptosis in vitro, resensitized PDX-derived cells to doxorubicin, and repressed lung metastasis in vivo. We propose that targeting the WNT10B biomarker network will provide improved outcomes for TNBC. SIGNIFICANCE: These findings reveal targeting the WNT signaling pathway as a potential therapeutic strategy in triple-negative breast cancer.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/5/982/F1.large.jpg.


Assuntos
Proteínas Proto-Oncogênicas/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Proteínas Wnt/metabolismo , Acetilação , Alelos , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Biomarcadores Tumorais , Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Linhagem Celular Tumoral , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Sinergismo Farmacológico , Proteína Potenciadora do Homólogo 2 de Zeste/biossíntese , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Feminino , Proteína HMGA2/biossíntese , Proteína HMGA2/genética , Proteína HMGA2/metabolismo , Humanos , Fator 1 de Ligação ao Facilitador Linfoide , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Metástase Neoplásica , Pirimidinonas/administração & dosagem , Pirimidinonas/farmacologia , Taxa de Sobrevida , Fator de Transcrição 4 , Neoplasias de Mama Triplo Negativas/genética , beta Catenina/metabolismo
5.
Cancer Res ; 79(6): 1054-1068, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30593524

RESUMO

Osteosarcoma is a malignant tumor in the bone, which originates from normal osteoblasts or osteoblast precursors. Normal osteoblasts express estrogen receptor alpha (ERα); however, osteosarcomas do not express ERα due to promoter DNA methylation. Here we show that treatment of 143B osteosarcoma cells with decitabine (DAC, 5-Aza-2'-deoxycytidine) induces expression of ERα and leads to decreased proliferation and concurrent induction of osteoblast differentiation. DAC exposure reduced protein expression of metastasis-associated markers VIMENTIN, SLUG, ZEB1, and MMP9, with a concurrent decrease in mRNA expression of known stem cell markers SOX2, OCT4, and NANOG. Treatment with 17ß-estradiol (E2) synergized with DAC to reduce proliferation. Overexpression of ERα inhibited proliferation and induced osteoblast differentiation, whereas knockout of ERα by CRISPR/Cas9 prevented the effects of DAC. In an orthotopic model of osteosarcoma, DAC inhibited tumor growth and metastasis of 143B cells injected into the tibia of NOD SCID gamma mice. Furthermore, ERα overexpression reduced tumor growth and metastasis, and ERα knockout prevented the effects of DAC in vivo. Together, these experiments provide preclinical evidence that the FDA-approved DNA methylation inhibitor DAC may be repurposed to treat patients with osteosarcoma based on its efficacy to decrease proliferation, to induce osteoblast differentiation, and to reduce metastasis to visceral organs.Significance: These findings describe the effects of DNA methyltransferase inhibition on ERα and its potential role as a tumor suppressor in osteosarcoma.See related commentary by Roberts, p. 1034 See related article by El Ayachi and colleagues; Cancer Res 79(5);982-93.


Assuntos
Metilação de DNA , Decitabina/farmacologia , Receptor alfa de Estrogênio/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Osteossarcoma/tratamento farmacológico , Animais , Antimetabólitos Antineoplásicos/farmacologia , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Proliferação de Células , Receptor alfa de Estrogênio/antagonistas & inibidores , Receptor alfa de Estrogênio/genética , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/secundário , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Prognóstico , Regiões Promotoras Genéticas , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
7.
J Tissue Eng Regen Med ; 12(4): e1836-e1851, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29139614

RESUMO

Induced pluripotent stem cells (iPSCs) give rise to neural stem/progenitor cells, serving as a good source for neural regeneration. Here, we established transgene-free (TF) iPSCs from dental stem cells (DSCs) and determined their capacity to differentiate into functional neurons in vitro. Generated TF iPSCs from stem cells of apical papilla and dental pulp stem cells underwent two methods-embryoid body-mediated and direct induction, to guide TF-DSC iPSCs along with H9 or H9 Syn-GFP (human embryonic stem cells) into functional neurons in vitro. Using the embryoid body-mediated method, early stage neural markers PAX6, SOX1, and nestin were detected by immunocytofluorescence or reverse transcription-real time polymerase chain reaction (RT-qPCR). At late stage of neural induction measured at Weeks 7 and 9, the expression levels of neuron-specific markers Nav1.6, Kv1.4, Kv4.2, synapsin, SNAP25, PSD95, GAD67, GAP43, and NSE varied between stem cells of apical papilla iPSCs and H9. For direct induction method, iPSCs were directly induced into neural stem/progenitor cells and guided to become neuron-like cells. The direct method, while simpler, showed cell detachment and death during the differentiation process. At early stage, PAX6, SOX1 and nestin were detected. At late stage of differentiation, all five genes tested, nestin, ßIII-tubulin, neurofilament medium chain, GFAP, and Nav, were positive in many cells in cultures. Both differentiation methods led to neuron-like cells in cultures exhibiting sodium and potassium currents, action potential, or spontaneous excitatory postsynaptic potential. Thus, TF-DSC iPSCs are capable of undergoing guided neurogenic differentiation into functional neurons in vitro, thereby may serve as a cell source for neural regeneration.


Assuntos
Diferenciação Celular , Polpa Dentária/metabolismo , Corpos Embrioides/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Adolescente , Adulto , Antígenos de Diferenciação/biossíntese , Polpa Dentária/citologia , Corpos Embrioides/citologia , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Masculino , Células-Tronco Neurais/citologia , Neurônios/citologia
8.
PLoS One ; 12(12): e0189864, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29281678

RESUMO

Metastatic breast cancer is the leading cause of worldwide cancer-related deaths among women. Triple negative breast cancers (TNBC) are highly metastatic and are devoid of estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2) amplification. TNBCs are unresponsive to Herceptin and/or anti-estrogen therapies and too often become highly chemoresistant when exposed to standard chemotherapy. TNBCs frequently metastasize to the lung and brain. We have previously shown that TNBCs are active for oncogenic Wnt10b/ß-catenin signaling and that WNT10B ligand and its downstream target HMGA2 are predictive of poorer outcomes and are strongly associated with chemoresistant TNBC metastatic disease. In search of new chemicals to target the oncogenic WNT10B/ß-CATENIN/HMGA2 signaling axis, the anti-proliferative activity of the diterpene Jatrophone (JA), derived from the plant Jatropha isabelli, was tested on TNBC cells. JA interfered with the WNT TOPFLASH reporter at the level between receptor complex and ß-catenin activation. JA efficacy was determined in various subtypes of TNBC conventional cell lines or in TNBC cell lines derived from TNBC PDX tumors. The differential IC50 (DCI50) responsiveness was compared among the TNBC models based on etiological-subtype and their cellular chemoresistance status. Elevated WNT10B expression also coincided with increased resistance to JA exposure in several metastatic cell lines. JA interfered with cell cycle progression, and induced loss of expression of the canonical Wnt-direct targets genes AXIN2, HMGA2, MYC, PCNA and CCND1. Mechanistically, JA reduced steady-state, non-phosphorylated (activated) ß-catenin protein levels, but not total ß-catenin levels. JA also caused the loss of expression of key EMT markers and significantly impaired wound healing in scratch assays, suggesting a direct role for JA inhibiting migration of TNBC cells. These results indicate that Jatrophone could be a powerful new chemotherapeutic agent against highly chemoresistant triple negative breast cancers by targeting the oncogenic Wnt10b/ß-catenin signaling pathway.


Assuntos
Proliferação de Células/efeitos dos fármacos , Diterpenos/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/patologia , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Neoplasias de Mama Triplo Negativas/metabolismo
9.
J Endod ; 42(3): 418-24, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26794343

RESUMO

INTRODUCTION: The ferret canine tooth has been introduced as a suitable model for studying dental pulp regeneration. The aim of this study was to isolate and characterize ferret dental pulp stem cells (fDPSCs) and their differentiation potential. METHODS: Dental pulp stem cells were isolated from freshly extracted ferret canine teeth. The cells were examined for the expression of stem cell markers STRO-1, CD90, CD105, and CD146. The osteo/odontogenic and adipogenic differentiation potential of fDPSCs was evaluated. Osteogenic and odontogenic marker genes were evaluated using quantitative real-time polymerase chain reaction (qRT-PCR) on days 1, 4, and 8 after osteo/odontogenic induction of fDPSCs including dentin sialophosphoprotein (DSPP), dentin matrix protein-1, osteopontin, and alkaline phosphatase. Human dental pulp cells were used as the control. The results were analyzed using 3-way analysis of variance. RESULTS: fDPSCs were positive for STRO1, CD90, and CD105 and negative for CD146 markers with immunohistochemistry. fDPSCs showed strong osteogenic and weak adipogenic potential. The overall expression of DSPP was not significantly different between fDPSCs and human dental pulp cells. The expression of DSPP in osteo/odontogenic media was significantly higher in fDPSCs on day 4 (P < .01). The overall expression of dentin matrix protein-1, osteopontin, and alkaline phosphatase was significantly higher in fDPSCs (P = .0005). CONCLUSIONS: fDPSCs were positive for several markers of dental pulp stem cells resembling human DPSCs and appeared to show a stronger potential to differentiate to osteoblastic rather than odontoblastic lineage.


Assuntos
Polpa Dentária/citologia , Furões , Células-Tronco/citologia , Animais , Antígenos CD/biossíntese , Biomarcadores/metabolismo , Bovinos , Diferenciação Celular/fisiologia , Células Cultivadas , Dente Canino/citologia , Dente Canino/metabolismo , Polpa Dentária/metabolismo , Feminino , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Modelos Animais , Odontoblastos/citologia , Odontogênese/genética , Osteogênese/genética , Células-Tronco/metabolismo
10.
J Endod ; 41(9): 1469-73, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26001857

RESUMO

INTRODUCTION: Tricalcium silicate-based materials are recognized as bioactive materials through their capacity to induce hard tissue formation both in the dental pulp and bone. Sealing the apex implies that the root canal filling materials interact with the periapical tissues. This work was designed to study the interactions of newly developed tricalcium silicate cement (BioRoot RCS; Septodont, Saint Maur Des Fosses, France) with apical tissue compared with a standard zinc oxide-eugenol sealer (Pulp Canal Sealer [PCS]; SybronEndo, Orange, CA). METHODS: Cell viability was assessed by direct contact between human periodontal ligament (PDL) cells and BioRoot RCS or PCS. In addition, an in vitro tooth model was used to study the interactions between these materials and PDL cells. For this purpose, human extracted incisors were sectioned at the enamel-cementum junction; root canals were prepared, sterilized, and filled with lateral condensation with both materials. The root apices were dipped in the culture medium for 24 hours. These conditioned media were used to investigate their effects on human PDL cells. Cell proliferation was investigated with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and the secretion of angiogenic and osteogenic growth factors was quantified using an enzyme-linked immunosorbent assay. RESULTS: BioRoot RCS has less toxic effects on PDL cells than PCS and induced a higher secretion of angiogenic and osteogenic growth factors than PCS. CONCLUSIONS: Taken together, these preclinical results suggest that the calcium silicate cement (BioRoot RCS) has a higher bioactivity than the zinc oxide-eugenol sealer (PCS) on human PDL cells.


Assuntos
Compostos de Cálcio/farmacologia , Cimentos Dentários/farmacologia , Tecido Periapical/efeitos dos fármacos , Ligamento Periodontal/citologia , Silicatos/farmacologia , Cimento de Óxido de Zinco e Eugenol/farmacologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo
11.
J Stem Cell Res Ther ; 5(7)2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26807329

RESUMO

Characterizing subpopulations of stem cells is important to understand stem cell properties. Tissue-nonspecific alkaline phosphatase (ALP) is associated with mineral tissue forming cells as well as stem cells. Information regarding ALP subpopulation of human periodontal ligament stem cells (hPDLSCs) is limited. In the present study, we examined ALP+ and ALP- hPDLSC subpopulations, their surface markers STRO-1 and CD146, and the expression of stemness genes at various cell passages. We found that ALP+ subpopulation had higher levels of STRO-1 (30.6 ± 5.6%) and CD146 (90.4 ± 3.3%) compared to ALP- (STRO-1: 0.5 ± 0.1%; CD146: 75.3 ± 7.2%). ALP+ cells expressed significantly higher levels of stemness associated genes, NANOG, OCT4 and SOX than ALP- cells at low cell passages of 2-3 (p<0.05). ALP+ and ALP- cells had similar osteogenic, chondrogenic and neurogenic potential while ALP-, not ALP+ cells, lacked adipogenic potential. Upon continuous culturing and passaging, ALP+ continued to express higher stemness genes and STRO-1 and CD146 than ALP- cells at ≥passage 19. Under conditions (over-confluence and vitamin C treatment) when ALP+ subpopulation was increased, the stemness gene levels of ALP+ was no longer significantly higher than those in ALP- cells. In conclusion, ALP+ hPDLSCs possess differential properties from their ALP- counterparts.

12.
J Comp Neurol ; 519(12): 2379-89, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21456020

RESUMO

Tenascin-R is an extracellular matrix glycoprotein that is restricted to the central nervous system, where it acts as a multifunctional and versatile molecule. We report spatial and temporal distribution of tenascin-R in the developing human cerebral cortex for the first time. At 7.5 gestational weeks (GW), tenascin-R was expressed in a restricted area of the basal telencephalon. At 9.5 and 11 GW, it showed a unique double band expression pattern that delineated the boundaries of the future cortical plate. From 14 to 30 GW, tenascin-R labeling extended to the whole cortex from the deep layers toward the marginal zone with an inside-to-outside progression pattern reminiscent of neuronal migration. Moreover, tenascin-R labeling initially appeared in the form of thin, straight, or slightly tortuous intercellular processes directed toward the surface in parallel with the axis of neuronal migration. At the end of pregnancy and at adulthood, diffuse and homogeneous immunolabeling of the whole cortex thickness was observed. The striatum and thalamus were faintly positive for TNR as early as 14 GW, and this positivity intensified with brain maturation. At all developmental stages, the germinative zone, the corpus callosum, the anterior commissure, and the internal capsule appeared clearly negative for tenascin-R immunostaining whereas the adjacent parenchyma was immunopositive. Our results show that tenascin-R expression is tightly regulated in a spatiotemporal manner during brain development, especially cortical plate formation. Its pattern of expression suggests a role for tenascin-R in corticogenesis.


Assuntos
Movimento Celular/fisiologia , Córtex Cerebral/embriologia , Córtex Cerebral/metabolismo , Neurônios/fisiologia , Tenascina/metabolismo , Adulto , Córtex Cerebral/citologia , Feminino , Idade Gestacional , Humanos , Neurônios/citologia , Gravidez , Trimestres da Gravidez
13.
Brain ; 132(Pt 6): 1523-35, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19336457

RESUMO

Pilocytic astrocytomas are WHO grade I gliomas that occur predominantly in childhood. They share features of both astroglial and oligodendroglial lineages. These tumours affect preferentially the cerebellum (benign clinical course) and the optic pathway, especially the hypothalamo-chiasmatic region (poor prognosis). Understanding the molecular basis responsible for the aggressive behaviour of hypothalamo-chiasmatic pilocytic astrocytomas is a prerequisite to setting up new molecular targeted therapies. We used the microarray technique to compare the transcriptional profiles of five hypothalamo-chiasmatic and six cerebellar pilocytic astrocytomas. Validation of the microarray results and comparison of the tumours with normal developing tissue was done by quantitative real-time PCR and immunohistochemistry. Results demonstrate that cerebellar and hypothalamo-chiasmatic pilocytic astrocytomas are two genetically distinct and topography-dependent entities. Numerous genes upregulated in hypothalamo-chiasmatic pilocytic astrocytomas also increased in the developing chiasm, suggesting that developmental genes mirror the cell of origin whereas migrative, adhesive and proliferative genes reflect infiltrative properties of these tumours. Of particular interest, NOTCH2, a gene expressed in radial glia and involved in gliomagenesis, was upregulated in hypothalamo-chiasmatic pilocytic astrocytomas. In order to find progenitor cells that could give rise to hypothalamo-chiasmatic pilocytic astrocytomas, we performed a morphological study of the hypothalamo-chiasmatic region and identified, in the floor of the third ventricle, a unique population of vimentin- and glial fibrillary acidic protein-positive cells highly suggestive of radial glia cells. Therefore, pilocytic astrocytomas of the hypothalamo-chiasmatic region should be considered as a distinct entity which probably originates from a unique population of cells with radial glia phenotype.


Assuntos
Astrocitoma/diagnóstico , Neoplasias do Nervo Óptico/diagnóstico , Adolescente , Adulto , Astrócitos/metabolismo , Astrocitoma/genética , Astrocitoma/patologia , Proliferação de Células , Neoplasias Cerebelares/diagnóstico , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/patologia , Criança , Pré-Escolar , DNA de Neoplasias/genética , Diagnóstico Diferencial , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Humanos , Hipotálamo/metabolismo , Lactente , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/patologia , Neuroglia/patologia , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Quiasma Óptico/citologia , Quiasma Óptico/embriologia , Quiasma Óptico/metabolismo , Neoplasias do Nervo Óptico/genética , Neoplasias do Nervo Óptico/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Regulação para Cima , Vimentina/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...