Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Fitoterapia ; 149: 104836, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33515650

RESUMO

Two new prenylated 4-phenylcoumarins, named kielcoumarin A (1) and kielcoumarin B (2) together with three known compounds, mammea B/BA (3), mammea B/BA cyclo F (4) and ferruol A (5), were obtained from stems and roots of Kielmeyera argentea (Calophyllaceae). Their structures were elucidated based on spectroscopic data. Cytotoxic activity of the 4-alkylcoumarins 3-5 was evaluated in vitro against human U251 glioblastoma cell line. Compound 3 showed significative activity with EC50 value of 6.6 µM while compounds 4 and 5 showed respective EC50 values of 52.0 and 37.0 µM.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Cumarínicos/farmacologia , Malpighiales/química , Antineoplásicos Fitogênicos/isolamento & purificação , Brasil , Cumarínicos/isolamento & purificação , Humanos , Estrutura Molecular , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Raízes de Plantas/química , Caules de Planta/química , Prenilação
2.
Neurotoxicology ; 66: 98-106, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29588162

RESUMO

Recent evidence shows that aminochrome induces glial activation related to neuroinflammation. This dopamine derived molecule induces formation and stabilization of alpha-synuclein oligomers, mitochondria dysfunction, oxidative stress, dysfunction of proteasomal and lysosomal systems, endoplasmic reticulum stress and disruption of the microtubule network, but until now there has been no evidence of effects on production of cytokines and neurotrophic factors, that are mechanisms involved in neuronal loss in Parkinson's disease (PD). This study examines the potential role of aminochrome on the regulation of NGF, GDNF, TNF-α and IL-1ß production and microglial activation in organotypic midbrain slice cultures from P8 - P9 Wistar rats. We demonstrated aminochrome (25 µM, for 24 h) induced reduction of GFAP expression, reduction of NGF and GDNF mRNA levels, morphological changes in Iba1+ cells, and increase of both TNF-α, IL-1ß mRNA and protein levels. Moreover, aminochrome (25 µM, for 48 h) induced morphological changes in the edge of slices and reduction of TH expression. These results demonstrate neuroinflammation, as well as negative regulation of neurotrophic factors (GDNF and NGF), may be involved in aminochrome-induced neurodegeneration, and they contribute to a better understanding of PD pathogenesis.


Assuntos
Encefalite/induzido quimicamente , Indolquinonas/toxicidade , Mesencéfalo/efeitos dos fármacos , Doença de Parkinson/metabolismo , Animais , Encefalite/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Interleucina-1beta/metabolismo , Mesencéfalo/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , Fator de Crescimento Neural/metabolismo , Ratos Wistar , Técnicas de Cultura de Tecidos , Fator de Necrose Tumoral alfa/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
3.
Toxicon ; 134: 41-49, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28400261

RESUMO

Monocrotaline (MCT) and its pyrrole derivative, dehydromonocrotaline (DHMC), interact with molecular targets in cells of the central nervous system. DHMC presents higher toxicity than MCT indicating that its metabolism of MCT is a critical step of this alkaloid toxicity. This study sought to elucidate the metabolism and the toxicity of MCT in C6 astrocyte cell line and primary cultures of rat astrocytes by investigating metabolic enzymatic mechanisms of the cytochrome P450 (CYP) system and conjugation with glutathione. Treatment with omeprazole (OMP) (20 µM), a non-specific inducer of CYP450 induced approximately 10-fold increase in CYP1A1 activity after 2 h of treatment. Similarly, the 7-Ethoxyresorufin-O-deethylase (EROD) activity was induced by treatment with MCT (100-500 µM), indicating that the P450 CYP1A1 isoform was active and involved in the metabolism of MCT. Analysis of conjugation with glutathione showed a significant depletion of GSH after MCT (500 µM) treatment, and this was partially reversed by pretreatment with a P450 inhibitor (cimetidine 100 µM). These results suggest that not only the alkaloid MCT but, also its metabolite may deplete GSH. Rosenfeld staining showed intense vacuolization after MCT treatment, which was partially inhibited in the presence of a P450 activator. MTT test showed that association of MCT with OMP induced a reduction in cell viability in C6 and primary astrocytic cells. These results demonstrate that MCT is metabolized by astrocytic CYP1A1 to generate metabolites that can deplete GSH. Moreover, changes in the activity of the P450 enzymes interfere with the cytotoxic effects induced by the alkaloid.


Assuntos
Astrócitos/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Monocrotalina/metabolismo , Monocrotalina/toxicidade , Animais , Linhagem Celular , Sobrevivência Celular , Crotalaria/química , Citocromo P-450 CYP1A1/efeitos dos fármacos , Glutationa/efeitos dos fármacos , Monocrotalina/análogos & derivados , Omeprazol/farmacologia , Isoformas de Proteínas/química , Ratos
4.
Chem Biol Interact ; 242: 123-38, 2015 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-26408079

RESUMO

The malignant gliomas are very common primary brain tumors with poor prognosis, which require more effective therapies than the current used, such as with chemotherapy drugs. In this work, we investigated the effects of several polyhydroxylated flavonoids namely, rutin, quercetin (F7), apigenin (F32), chrysin (F11), kaempferol (F12), and 3',4'-dihydroxyflavone (F2) in human GL-15 glioblastoma cells. We observed that all flavonoids decreased the number of viable cells and the mitochondrial metabolism. Furthermore, they damaged mitochondria and rough endoplasmic reticulum, inducing apoptosis. Flavonoids also induced a delay in cell migration, related to a reduction in filopodia-like structures on the cell surface, reduction on metalloproteinase (MMP-2) expression and activity, as well as an increase in intra- and extracellular expression of fibronectin, and intracellular expression of laminin. Morphological changes were also evident in adherent cells characterized by the presence of a condensed cell body with thin and long cellular processes, expressing glial fibrillary acidic protein (GFAP). Therefore, these flavonoids should be tested as potential antitumor agents in vitro and in vivo in other malignant glioma models.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Proteínas da Matriz Extracelular/metabolismo , Flavonoides/farmacologia , Glioblastoma/tratamento farmacológico , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Retículo Endoplasmático/efeitos dos fármacos , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Metaloproteases/metabolismo
6.
Chem Res Toxicol ; 26(12): 1810-20, 2013 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-23923817

RESUMO

Prosopis juliflora is a shrub largely used for animal and human consumption. However, ingestion has been shown to induce intoxication in animals, which is characterized by neuromuscular alterations induced by mechanisms that are not yet well understood. In this study, we investigated the cytotoxicity of a total alkaloid extract (TAE) and one alkaloid fraction (F32) obtained from P. juliflora leaves to rat cortical neurons and glial cells. Nuclear magnetic resonance characterization of F32 showed that this fraction is composed of a mixture of two piperidine alkaloids, juliprosopine (majority constituent) and juliprosine. TAE and F32 at concentrations between 0.3 and 45 µg/mL were tested for 24 h on neuron/glial cell primary cocultures. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide test revealed that TAE and F32 were cytotoxic to cocultures, and their IC50 values were 31.07 and 7.362 µg/mL, respectively. Exposure to a subtoxic concentration of TAE or F32 (0.3-3 µg/mL) induced vacuolation and disruption of the astrocyte monolayer and neurite network, ultrastructural changes, characterized by formation of double-membrane vacuoles, and mitochondrial damage, associated with changes in ß-tubulin III and glial fibrillary acidic protein expression. Microglial proliferation was also observed in cultures exposed to TAE or F32, with increasing levels of OX-42-positive cells. Considering that F32 was more cytotoxic than TAE and that F32 reproduced in vitro the main morphologic and ultrastructural changes of "cara torta" disease, we can also suggest that piperidine alkaloids juliprosopine and juliprosine are primarily responsible for the neurotoxic damage observed in animals after they have consumed the plant.


Assuntos
Alcaloides/farmacologia , Citoplasma/efeitos dos fármacos , Indolizinas/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Neuroglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Prosopis/química , Alcaloides/química , Alcaloides/isolamento & purificação , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Citoplasma/patologia , Relação Dose-Resposta a Droga , Indolizinas/química , Indolizinas/isolamento & purificação , Estrutura Molecular , Neuroglia/patologia , Neurônios/patologia , Folhas de Planta/química , Ratos , Ratos Wistar , Relação Estrutura-Atividade
7.
Oxid Med Cell Longev ; 2011: 467180, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22191013

RESUMO

The incidence and prevalence of neurodegenerative diseases (ND) increase with life expectancy. This paper reviews the role of oxidative stress (OS) in ND and pharmacological attempts to fight against reactive oxygen species (ROS)-induced neurodegeneration. Several mechanisms involved in ROS generation in neurodegeneration have been proposed. Recent articles about molecular pathways involved in ROS generation were reviewed. The progress in the development of neuroprotective therapies has been hampered because it is difficult to define targets for treatment and determine what should be considered as neuroprotective. Therefore, the attention was focused on researches about pharmacological targets that could protect neurons against OS. Since it is necessary to look for genes as the ultimate controllers of all biological processes, this paper also tried to identify gerontogenes involved in OS and neurodegeneration. Since neurons depend on glial cells to survive, recent articles about the functioning of these cells in aging and ND were also reviewed. Finally, clinical trials testing potential neuroprotective agents were critically reviewed. Although several potential drugs have been screened in in vitro and in vivo models of ND, these results were not translated in benefit of patients, and disappointing results were obtained in the majority of clinical trials.


Assuntos
Doenças Neurodegenerativas/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo , Envelhecimento/genética , Animais , Ensaios Clínicos como Assunto , Geriatria/tendências , Humanos , Terapia de Alvo Molecular , Doenças Neurodegenerativas/complicações , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/fisiopatologia , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Espécies Reativas de Oxigênio/metabolismo , Falha de Tratamento
8.
Neurotoxicology ; 32(6): 776-84, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21781985

RESUMO

Studies have shown cases of poisoning with plants from the genus Crotalaria (Leguminosae) mainly in animals. They induce damages in the central nervous system (CNS), which has been attributed to toxic effects of the pyrrolizidine alkaloid (PA) monocrotaline (MCT). Previously we demonstrated that both MCT and dehydromonocrotaline (DHMC), its main active metabolite, induce changes in the levels and patterns of expression of the main protein from astrocyte cytoskeleton, glial fibrillary acidic protein (GFAP). In this study we investigated the effect of MCT on rat cortical astrocyte/neuron primary co-cultures. Primary cultures were exposed to 10 or 100 µM MCT. The MTT test and the measurement of LDH activity on the culture medium revealed that after 24h exposure MCT was not cytotoxic to neuron/astrocyte cells. However, the cell viability after 72 h treatment decreased in 10-20%, and the LDH levels in the culture medium increased at a rate of 12% and 23%, in cultures exposed to 10 or 100 µM MCT. Rosenfeld staining showed vacuolization and increase in cell body in astrocytes after MCT exposure. Immunocytochemistry and Western blot analyses revealed changes on pattern of GFAP and ßIII-tubulin expression and steady state levels after MCT treatment, with a dose and time dependent intense down regulation and depolarization of neuronal ßIII-tubulin. Moreover, treatment with 100 µM MCT for 12h induced GSH depletion, which was not seen when cytochrome P450 enzyme system was inhibited indicating that it is involved in MCT induced cytotoxicity in CNS cells.


Assuntos
Astrócitos/efeitos dos fármacos , Cérebro/efeitos dos fármacos , Crotalaria , Monocrotalina/toxicidade , Neurônios/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Astrócitos/metabolismo , Astrócitos/patologia , Western Blotting , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cérebro/embriologia , Cérebro/metabolismo , Cérebro/patologia , Técnicas de Cocultura , Crotalaria/química , Inibidores das Enzimas do Citocromo P-450 , Sistema Enzimático do Citocromo P-450/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Proteína Glial Fibrilar Ácida/metabolismo , Glutationa/metabolismo , Imuno-Histoquímica , L-Lactato Desidrogenase/metabolismo , Monocrotalina/isolamento & purificação , Neurônios/metabolismo , Neurônios/patologia , Ratos , Ratos Wistar , Fatores de Tempo , Tubulina (Proteína)/metabolismo
9.
Gen Physiol Biophys ; 27(4): 306-14, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19202205

RESUMO

The mechanisms of catechol-induced cytotoxicity were studied in cultures of neuroblastoma N2a cells. The minimal cytotoxic concentration after 72 h was 20 micromol x l(-1). The EC50 after 72 h was 38 micromol x l(-1). There was not a correlation between the cytotoxicity and the formation of quinones in the medium. Catechol-induced cytotoxicity was increased significantly when superoxide dismutase (SOD) was added. The addition of catalase did not protect cells, but this enzyme reverted the deleterious effect of SOD. The experimental studies showed a detrimental effect of deferoxamine on catechol-induced cytotoxicity suggesting that cells need iron to maintain its metabolism. NF-kappaB inhibitors increased the cytotoxicity, suggesting that this factor is also important for cell viability. L-cysteine and N-acetyl-L-cysteine protected cells significantly in a dose-dependent manner. The use of monochlorobimane showed that catechol induced reduced glutathione (GSH) depletion after 24 h, prior to cell death. The mode of cell death was studied by flow cytometry after double staining with annexin V and propidium iodide. Catechol induced apoptosis after 72 h. Furthermore, catechol also induced nuclear fragmentation. These data showed that catechol-induced cytotoxicity to N2a cell was not directly a consequence of reactive oxygen species production. Rather, it was due to GSH depletion followed by the induction of apoptosis.


Assuntos
Catecóis/farmacologia , Citotoxinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Antioxidantes/fisiologia , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Ácido Ascórbico/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Curcumina/farmacologia , Cisteína/farmacologia , Desferroxamina/farmacologia , Glutationa/metabolismo , Camundongos , NF-kappa B/metabolismo , Neuroblastoma , Sesquiterpenos/farmacologia , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...