Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 262(Pt 2): 130010, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38336320

RESUMO

In this work, gamma irradiation was used to create bimetallic silver­copper oxide nanoparticles (Ag-CuO NPs) in an ecologically acceptable way using gum Arabic (GA) polymer as a capping and reducing agent. Bimetallic Ag-CuO NPs were investigated through UV-Vis. spectroscopy, HR-TEM, SEM, DLS, and XRD examinations. The potency of antimicrobial and antibiofilm activities against a few bacterial isolates and Candida sp. had been investigated. Clinical investigations of 30 cows and 20 buffaloes from different sites in Egypt's Sharkia governorate found ulcerative lesions on the mouth and interdigital region. The cytotoxic assay of the generated NPs on BHK-21 was examined. The bimetallic Ag-CuO NPs had an average diameter of 25.58 nm, and the HR-TEM results showed that they were spherical. According to our results, Ag-CuO NPs exhibited the highest antibacterial efficacy against S. aureus (26.5 mm ZOI), K. pneumoniae (26.0 mm ZOI), and C. albicans (28.5 mm ZOI). The growth of biofilms was also successfully inhibited through the application of Ag-CuO NPs by 88.12 % against S. aureus, 87.08 % against C. albicans, and 74.0 % against B. subtilis. The ulcers on the mouth and foot of diseased animals healed in 4-5 days and 1 week, respectively, following topical application of bimetallic Ag-CuO NPs. The results examined the potential protective effects of a dosage of 3.57 µg/mL on cells before viral infection (cell control). According to our research, bimetallic Ag-CuO NPs limit the development of the virus that causes foot-and-mouth disease (FMD). The reduction of a specific FMD virus's cytopathic impact (CPE) on cell development represented the inhibitory effect when compared to identical circumstances without pretreatment with bimetallic Ag-CuO NPs. Their remarkable antibacterial properties at low concentration and continued-phase stability suggest that they may find widespread use in a variety of pharmacological and biological applications, especially in the wound-healing process.


Assuntos
Anti-Infecciosos , Febre Aftosa , Nanopartículas Metálicas , Nanopartículas , Feminino , Animais , Bovinos , Prata/química , Cobre/química , Goma Arábica/farmacologia , Staphylococcus aureus , Biomassa , Antibacterianos/química , Bactérias , Anti-Infecciosos/farmacologia , Nanopartículas/química , Óxidos/farmacologia , Nanopartículas Metálicas/química
2.
World J Microbiol Biotechnol ; 39(12): 324, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37773301

RESUMO

Helicobacter pylori (H. pylori) is the main cause of gastric diseases. However, the traditional antibiotic treatment of H. pylori is limited due to increased antibiotic resistance, low efficacy, and low drug concentration in the stomach. This study developed a Nano-emulsion system with ability to carry Curcumin and Clarithromycin to protect them against stomach acidity and increase their efficacy against H. pylori. We used oil in water emulsion system to prepare a novel Curcumin Clarithromycin Nano-Emulsion (Cur-CLR-NE). The nano-emulsion was validated by dynamic light scattering (DLS) technique, zeta potential; transmission electron microscopy (mean particle size 48 nm), UV-visible scanning and Fourier transform infrared spectroscopy (FT-IR). The in vitro assay of Cur-CLR-NE against H. pylori was evaluated by minimum inhibitory concentration (12.5 to 6.26 µg/mL), minimum bactericidal concentration (MBC) and anti-biofilm that showed a higher inhibitory effect of Cur-CLR-NE in compere with, free curcumin and clarithromycin against H. pylori. The in vivo results indicated that Cur-CLR-NE showed higher H. pylori clearance effect than free clarithromycin or curcumin under the same administration frequency and the same dose regimen. Histological analysis clearly showed that curcumin is highly effective in repairing damaged tissue. In addition, a potent synergistic effect was obvious between clarithromycin and curcumin in nano-emulsion system. The inflammation, superficial damage, the symptoms of gastritis including erosion in the mouse gastric mucosa, necrosis of the gastric epithelium gastric glands and interstitial oedema of tunica muscularis were observed in the positive control infected mice and absent from treated mice with Cur-CLR-NE.


Assuntos
Curcumina , Infecções por Helicobacter , Helicobacter pylori , Animais , Camundongos , Claritromicina/farmacologia , Claritromicina/uso terapêutico , Infecções por Helicobacter/tratamento farmacológico , Curcumina/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
3.
Int J Mol Sci ; 24(10)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37240275

RESUMO

A new series of 4-((7-methoxyquinolin-4-yl) amino)-N-(substituted) benzenesulfonamide 3(a-s) was synthesized via the reaction of 4-chloro-7-methoxyquinoline 1 with various sulfa drugs. The structural elucidation was verified based on spectroscopic data analysis. All the target compounds were screened for their antimicrobial activity against Gram-positive bacteria, Gram-negative bacteria, and unicellular fungi. The results revealed that compound 3l has the highest effect on most tested bacterial and unicellular fungal strains. The highest effect of compound 3l was observed against E. coli and C. albicans with MIC = 7.812 and 31.125 µg/mL, respectively. Compounds 3c and 3d showed broad-spectrum antimicrobial activity, but the activity was lower than that of 3l. The antibiofilm activity of compound 3l was measured against different pathogenic microbes isolated from the urinary tract. Compound 3l could achieve biofilm extension at its adhesion strength. After adding 10.0 µg/mL of compound 3l, the highest percentage was 94.60% for E. coli, 91.74% for P. aeruginosa, and 98.03% for C. neoformans. Moreover, in the protein leakage assay, the quantity of cellular protein discharged from E. coli was 180.25 µg/mL after treatment with 1.0 mg/mL of compound 3l, which explains the creation of holes in the cell membrane of E. coli and proves compound 3l's antibacterial and antibiofilm properties. Additionally, in silico ADME prediction analyses of compounds 3c, 3d, and 3l revealed promising results, indicating the presence of drug-like properties.


Assuntos
Anti-Infecciosos , Infecções Urinárias , Escherichia coli , Relação Estrutura-Atividade , Testes de Sensibilidade Microbiana , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Sulfanilamida/farmacologia , Sulfonamidas/farmacologia , Fungos , Biofilmes
4.
Microb Pathog ; 180: 106131, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37121523

RESUMO

Recently nanocomposites have become a super-growth inducers as well as vital antifungal agents, which enhance plant growth and suppress plant diseases. A new strategy regarding the fabrication of humic acid (H) and boron (B) conjugated Fe2O3 nanocomposites was performed. Fe2O3 NP-B and Fe2O3 NP-H were synthesized in the presence of gamma-rays (as a direct reducing agent). Gamma-rays provoked reduction of metal ions due to the liberated reducing electrons, (e-aq), in aqueous solutions which can be considered as a direct reduction. Antifungal potential against Fusarium oxysporum, the causative agent of wilt disease in cucumber was determined. Disease index percent, metabolic resistance indicators in cucumber plant as response to promotion of systemic resistance (SR) were recorded. Results illustrated that both Fe2O3 NPs-B and Fe2O3 NPs-H nanocomposites had antifungal activity against F. oxysporumin vitro as well as in vivo. Results revealed that minimum inhibitory concentrations of Fe2O3 NPs-B and Fe2O3 NPs-H nanocomposites were 0.25 and 0.125 mM, respectively. Application of Fe2O3 NPs-B (0.25 mM) and Fe2O3 NPs-H (0.125 mM) appeared highly reduced the cucumber wilt disease symptoms incidence caused by F. oxysporum, and recorded disease severity by 83.33%. Fe2O3 NPs-B was the best treatment reducing disease indexes by 20.83% and gave highly protection against wilt disease by 75.0% and came next Fe2O3 NPs-H which reduced disease indexes by 25% and gave 69.99% protection against disease. Fe2O3 NPs-B and Fe2O3 NPs-H treatments improved morphological traits, photosynthetic pigments, osmolytes, total phenol and antioxidant enzymes activities in both infected and non-infected plants. The beneficial effects of the synthesized Fe2O3 NPs-B and Fe2O3 NPs-H nanocomposites were extended to increase not only the total phenol, and total soluble protein contents but also the activities of peroxidase (POD), and polyphenol oxidase (PPO) enzymes of the healthy and infected cucumber plants in comparison with control.


Assuntos
Cucumis sativus , Fusarium , Cucumis sativus/microbiologia , Antifúngicos/farmacologia , Antioxidantes/farmacologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
5.
Virol J ; 19(1): 167, 2022 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-36280866

RESUMO

The rise of the highly lethal severe acute respiratory syndrome-2 (SARS-2) as corona virus 2019 (COVID-19) reminded us of the history of other pandemics that happened in the last century (Spanish flu) and stayed in the current century, which include Severe-Acute-Respiratory-Syndrome (SARS), Middle-East-Respiratory-Syndrome (MERS), Corona Virus 2019 (COVID-19). We review in this report the newest findings and data on the origin of pandemic respiratory viral diseases, reservoirs, and transmission modes. We analyzed viral adaption needed for host switch and determinants of pathogenicity, causative factors of pandemic viruses, and symptoms and clinical manifestations. After that, we concluded the host factors associated with pandemics morbidity and mortality (immune responses and immunopathology, ages, and effect of pandemics on pregnancy). Additionally, we focused on the burdens of COVID-19, non-pharmaceutical interventions (quarantine, mass gatherings, facemasks, and hygiene), and medical interventions (antiviral therapies and vaccines). Finally, we investigated the nanotechnology between COVID-19 analysis and immune system boosting (Nanoparticles (NPs), antimicrobial NPs as antivirals and immune cytokines). This review presents insights about using nanomaterials to treat COVID-19, improve the bioavailability of the abused drugs, diminish their toxicity, and improve their performance.


Assuntos
COVID-19 , Influenza Pandêmica, 1918-1919 , Coronavírus da Síndrome Respiratória do Oriente Médio , História do Século XX , Humanos , Pandemias , COVID-19/diagnóstico , COVID-19/epidemiologia , Teste para COVID-19 , Antivirais/uso terapêutico , Nanotecnologia , Sistema Imunitário , Citocinas
6.
Int J Mol Sci ; 23(17)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36077035

RESUMO

The current study aims to evaluate the possible neuroprotective impact of gold nanoparticles (AuNPs) and an alpha-lipoic acid (ALA) mixture against brain damage in irradiated rats. AuNPs were synthesized and characterized using different techniques. Then, a preliminary investigation was carried out to determine the neuroprotective dose of AuNPs, where three single doses (500, 1000, and 1500 µg/kg) were orally administrated to male Wistar rats, one hour before being exposed to a single dose of 7Gy gamma radiation. One day following irradiation, the estimation of oxidative stress biomarkers (malondialdehyde, MDA; glutathione peroxidase, GPX), DNA fragmentation, and histopathological alterations were performed in brain cortical and hippocampal tissues in both normal and irradiated rats. The chosen neuroprotective dose of AuNPs (1000 µg/kg) was processed with ALA (100 mg/kg) to prepare the AuNPs-ALA mixture. The acute neuroprotective effect of AuNPs-ALA in irradiated rats was determined against valproic acid as a neuroprotective centrally acting reference drug. All drugs were orally administered one hour before the 7Gy-gamma irradiation. One day following irradiation, animals were sacrificed and exposed to examinations such as those of the preliminary experiment. Administration of AuNPs, ALA, and AuNPs-ALA mixture before irradiation significantly attenuated the radiation-induced oxidative stress through amelioration of MDA content and GPX activity along with alleviating DNA fragmentation and histopathological changes in both cortical and hippocampal tissues. Notably, the AuNPs-ALA mixture showed superior effect compared to that of AuNPs or ALA alone, as it mitigated oxidative stress, DNA damage, and histopathological injury collectively. Administration of AuNPs-ALA resulted in normalized MDA content, increased GPX activity, restored DNA content in the cortex and hippocampus besides only mild histopathological changes. The present data suggest that the AuNPs-ALA mixture may be considered a potential candidate for alleviating radiation-associated brain toxicity.


Assuntos
Nanopartículas Metálicas , Fármacos Neuroprotetores , Ácido Tióctico , Animais , Antioxidantes/farmacologia , Encéfalo , Ouro/farmacologia , Masculino , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo , Ratos , Ratos Wistar , Ácido Tióctico/farmacologia
7.
RSC Adv ; 12(9): 5619-5628, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35425529

RESUMO

Preparation of a thin film of polyvinyl alcohol (PVA)/myrrh natural resin using a low gamma irradiation dose (1 kGy) was investigated towards increasing the post-harvest time of lemon fruit. Different analytical techniques, such as Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) spectroscopy, and mapping techniques were used to characterize the prepared thin film. This investigation was carried out to evaluate the effect of different concentrations of myrrh as an edible coating in prolonging shelf life and preserving the quality of lemon fruits (Citrus aurantifolia). Lemons were immersed directly in PVA solution containing 1%, 2%, and 3% concentrations of myrrh and then stored at ambient (25 ± 1 °C) and low (4 ± 1 °C) temperatures. The disease severity, acidity, total soluble solids (TSS), and ascorbic acid contents were tested after the coating with the PVA/myrrh thin film at different temperatures (4 °C and 25 °C) for different storage times (7 and 14 days). The application of different concentrations of the synthesized PVA/myrrh thin film (1%, 2%, and 3%) significantly reduced green mold disease symptoms and disease severity in the lemon fruits. The acidity value (pH value) was the lowest for the 2% myrrh treatment after 7 °C days at 25 °C, followed by the 1% myrrh treatment under the same conditions. The highest TSS was observed after the treatment for 7 days at 25 °C, with a value of 8.1 g dL-1. A high ascorbic acid concentration (33.5 mg dL-1) was noted after coating the lemons with the 1% PVA/myrrh thin film for 7 days at 25 °C. The results show that the application of a PVA/myrrh thin film extends the shelf-life and maintains the quality of lemon fruits by decreasing the levels of evaporation from the fruits and loss of weight due to the delay of the complete ripening stage of the lemon fruits.

8.
Appl Biochem Biotechnol ; 194(8): 3558-3581, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35438406

RESUMO

Taxol production by fungi is one of the promising alternative approaches, regarding to the natural and semisynthetic sources; however, the lower yield and rapid loss of Taxol productivity by fungi are the major challenges that halt their further industrial implementation. Thus, searching for fungal isolates with affordable Taxol-production stability, in addition to enhance its anticancer activity via conjugation with gold nanoparticles, is the main objectives of this study. Twenty-four endophytic fungal isolates were recovered from the barks, twigs, and leaves of jojoba plant, among these fungi, Aspergillus flavus MW485934.1 was the most potent Taxol producer (88.6 µg/l). The chemical identity of the extracted Taxol of A. flavus was verified by the TLC, HPLC, HNMR, and FTIR analyses. The yield of Taxol produced by A. flavus was optimized by the response surface methodology (RSM) using Plackett-Burman (PBD) and faced central composite designs (FCCD). The yield of Taxol by A. flavus was increased by about 3.2 folds comparing to the control cultures (from 96.5 into 302.7 µg/l). The highest Taxol yield by was obtained growing A. flavus on a modified malt extract medium (g/l) (malt extract 20.0, peptone 2.0, sucrose 20.0, soytone 2.0, cysteine 0.5, glutamine 0.5, and beef extract 1.0 adjusted to pH 6.0) and incubated at 30 °C for 16 days. From the FCCD design, the significant variables affecting Taxol production by A. flavus were cysteine, pH, and incubation time. Upon A. flavus γ-irradiation at 1.0 kGy, the Taxol yield was increased by about 1.25 fold (375.9 µg/l). To boost its anticancer activity, the purified Taxol was conjugated with gold nanoparticles (AuNPs) mediated by γ-rays irradiation (0.5 kGy), and the physicochemical properties of Taxol-AuNPs composite were evaluated by UV-Vis, DLS, XRD, and TEM analyses. The IC50 values of the native-Taxol and Taxol-AuNPs conjugates towards HEPG-2 cells were 4.06 and 2.1 µg/ml, while the IC50 values against MCF-7 were 6.07 and 3.3 µg/ml, respectively. Thus, the anticancer activity of Taxol-AuNPs composite was increased by 2 folds comparing to the native Taxol towards HEPG-2 and MCF-7 cell lines. Also, the antimicrobial activity of Taxol against the multidrug resistant bacteria was dramatically increased upon conjugation with AuNPs comparing to authentic AuNPs and Taxol, ensuring the higher solubility, targetability, and efficiency of Taxol upon AuNPs conjugation.


Assuntos
Ouro , Nanopartículas Metálicas , Animais , Aspergillus flavus , Bovinos , Cisteína , Endófitos , Nanopartículas Metálicas/química , Paclitaxel/farmacologia , Extratos Vegetais
9.
Microb Pathog ; 164: 105440, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35143890

RESUMO

Magnesium ferrite nanoparticles (Mg Fe2O4 NPs) was synthesized by a chemical co-precipitation method and characterized via structural and optical properties. The surface of Mg Fe2O4 NPs was stabilized with citric acid (CA) by a direct addition method (CA-Mg Fe2O4 NPs), then Amoxicillin (AX) was loaded with CA-Mg Fe2O4 nanocomposites. Furthermore, their antimicrobial, and antibiofilm activities, growth curve, and effect of UV-illumination methods were examined against different pathogenic microbes. Based on XRD, HRTEM and SEM analyses, it is found that Mg Fe2O4 NPs are located at the core, while the CA and AX are coated this core. In-vitro zone of inhibition (ZOI) and minimum inhibitory concentration (MIC) results verified that AX-loaded CA-Mg Fe2O4 nanocomposites exhibited its encouraged antimicrobial activity against S. aureus, E. coli, and C. albicans (32.2, 22.0, and 19.0 mm ZOI, respectively) & (0.312, 0.625, and 1.25 µg/ml MIC, respectively). AX-CA-Mg Fe2O4 nanocomposites are showed antibiofilm percentage against S. aureus (95.34%), E. coli (93.93%), and C. albicans (76.23%). AX-CA-MgFe2O4 nanocomposites are an excellent disinfectant agents once they are excited by UV light. Membrane leakage assay explains the formation of holes on the surface of bacteria, and confirms SEM reaction mechanism. AX-loaded CA-Mg Fe2O4 NPs are promising for potential applications in biomedical uses.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Nanocompostos , Amoxicilina/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Biofilmes , Ácido Cítrico/farmacologia , Escherichia coli , Compostos Férricos , Iluminação , Compostos de Magnésio , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Nanocompostos/química , Staphylococcus aureus , Raios Ultravioleta
10.
Cancers (Basel) ; 13(21)2021 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-34771733

RESUMO

Globally, breast cancer (BC) poses a serious public health risk. The disease exhibits a complex heterogeneous etiology and is associated with a glycolytic and oxidative phosphorylation (OXPHOS) metabolic reprogramming phenotype, which fuels proliferation and progression. Due to the late manifestation of symptoms, rigorous treatment regimens are required following diagnosis. Existing treatments are limited by a lack of specificity, systemic toxicity, temporary remission, and radio-resistance in BC. In this study, we have developed CD44 and folate receptor-targeting multi-functional dual drug-loaded nanoparticles. This composed of hyaluronic acid (HA) and folic acid (FA) conjugated to a 2-deoxy glucose (2DG) shell linked to a layer of dichloroacetate (DCA) and a magnesium oxide (MgO) core (2DG@DCA@MgO; DDM) to enhance the localized chemo-radiotherapy for effective BC treatment. The physicochemical properties of nanoparticles including stability, selectivity, responsive release to pH, cellular uptake, and anticancer efficacy were thoroughly examined. Mechanistically, we identified multiple component signaling pathways as important regulators of BC metabolism and mediators for the inhibitory effects elicited by DDM. Nanoparticles exhibited sustained DDM release properties in a bio-relevant media, which was responsive to the acidic pH enabling eligibility to the control of drug release from nanoparticles. DDM-loaded and HA-FA-functionalized nanoparticles exhibited increased selectivity and uptake by BC cells. Cell-based assays revealed that the functionalized DDM significantly suppressed cancer cell growth and improved radiotherapy (RT) through inducing cell cycle arrest, enhancing apoptosis, and modulating glycolytic and OXPHOS pathways. By highlighting DDM mechanisms as an antitumor and radio-sensitizing reagent, our data suggest that glycolytic and OXPHOS pathway modulation occurs via the PI3K/AKT/mTOR/NF-κB/VEGFlow and P53high signaling pathway. In conclusion, the multi-functionalized DDM opposed tumor-associated metabolic reprogramming via multiple signaling pathways in BC cells as a promising targeted metabolic approach.

11.
Int J Mol Sci ; 22(18)2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34576334

RESUMO

Cancers are a major challenge to health worldwide. Spinel ferrites have attracted attention due to their broad theranostic applications. This study aimed at investigating the antimicrobial, antibiofilm, and anticancer activities of ebselen (Eb) and cerium-nanoparticles (Ce-NPs) in the form of ZnCexFe2-XO4 on human breast and colon cancer cell lines. Bioassays of the cytotoxic concentrations of Eb and ZnCexFe2-XO4, oxidative stress and inflammatory milieu, autophagy, apoptosis, related signalling effectors, the distribution of cells through the cell-cycle phases, and the percentage of cells with apoptosis were evaluated in cancer cell lines. Additionally, the antimicrobial and antibiofilm potential have been investigated against different pathogenic microbes. The ZOI, and MIC results indicated that ZnCexFe2-XO4; X = 0.06 specimen reduced the activity of a wide range of bacteria and unicellular fungi at low concentration including P. aeruginosa (9.5 mm; 6.250 µg/mL), S. aureus (13.2 mm; 0.390 µg/mL), and Candida albicans (13.5 mm; 0.195 µg/mL). Reaction mechanism determination indicated that after ZnCexFe2-xO4; X = 0.06 treatment, morphological differences in S.aureus were apparent with complete lysis of bacterial cells, a concomitant decrease in the viable number, and the growth of biofilm was inhibited. The combination of Eb with ZFO or ZnCexFe2-XO4 with γ-radiation exposure showed marked anti-proliferative efficacy in both cell lines, through modulating the oxidant/antioxidant machinery imbalance, restoring the fine-tuning of redox status, and promoting an anti-inflammatory milieu to prevent cancer progression, which may be a valuable therapeutic approach to cancer therapy and as a promising antimicrobial agent to reduce the pathogenic potential of the invading microbes.


Assuntos
Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Biofilmes/efeitos dos fármacos , Cério/farmacologia , Raios gama , Células HT29 , Humanos , Isoindóis/farmacologia , Compostos Organosselênicos/farmacologia
12.
Biotechnol Rep (Amst) ; 30: e00623, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34026575

RESUMO

Twenty-eight fungal endophytes were recovered from the different parts of Ginkgo biloba and screened for their Taxol producing potency. Among these isolates, Penicillium polonicum AUMC14487 was reported as the potent Taxol producer (90.53 µg/l). The chemical identity of the extracted Taxol was verified from the TLC, HPLC, NMR, EDX, and FTIR analyses. The extracted Taxol displayed a strong antiproliferative activity against HEPG2 (IC50 4.06 µM) and MCF7 (IC50 6.07 µM). The yield of Taxol by P. polonicum was optimized by nutritional optimization with the Response Surface Methodology (RSM) using Plackett-Burman and Central Composite Designs. In addition to nutritional optimization, the effect of γ-irradiation of the spores of P. polonicum on its Taxol producing potency was evaluated. The yield of Taxol by P. polonicum was increased via nutritional optimization by response surface methodology with Plackett-Burman and FCCD designs, and γ-irradiation by about 4.5 folds, comparing to the control culture. The yield of Taxol was increased by about 1.2 folds (401.2 µg/l) by γ -irradiation of the isolates at 0.5-0.75 kGy, comparing to the control cultures (332.2 µg/l). The highest Taxol yield was obtained by growing P. polonicum on modified Czapek's- Dox medium (sucrose 40.0 g/l, malt extract 20.0 g/l, peptone 2.0 g/l, K2PO4 2.0 g/l, KCl 1.0 g/l, NaNO3 2.0 g/l, MgSO4. 5H2O 1.0 g/l) of pH 7.0 at 30.0 °C for 7.0 days. From the FCCD design, sucrose, malt extract and incubation time being the highest significant variables medium components affecting the Taxol production by P. polonicum.

13.
Biometals ; 34(4): 815-829, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33895912

RESUMO

Aqueous glutathione selenium nano-incorporation (GSH-SeN-Inco) was prepared by gamma radiation in presence of microbial glutathione (GSH) and selenium dioxide. The novel prepared GSH-SeN-Inco are validated by UV-vis spectroscopy, TEM (17.5 nm), DLS, XRD, EDX and FTIR spectrum reveals the presence of GSH moiety that coating the selenium nanoparticles (SeNPs) forming GSH-SeN-Inco. The XRD analysis verified the presence of metallic SeNPs. The nucleation and radiolysis mechanism of GSH-SeN-Inco formation are also discussed. The size GSH-SeN-Inco (17.5 nm) is affected by certain factors such as concentration of GSH, selenium dioxide, and absorbed dose of gamma radiation. The present study explored the positive role of GSH-SeN-Inco as an antitumor activity against HepG-2 and MCF-7, with IC50 at a concentration of 1.00 and 0.9 mM, respectively. The GSH-SeN-Inco show significant scavenging activity at 33%. The GSH-SeN-Inco shows antimicrobial potential against Gram-negative and Gram-positive bacteria with significant MIC especially Escherichia coli ATCC 25922 at 5.20 µg/ml.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Glutationa/farmacologia , Nanopartículas/química , Selênio/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Antioxidantes/síntese química , Antioxidantes/química , Compostos de Bifenilo/antagonistas & inibidores , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Glutationa/química , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Humanos , Tamanho da Partícula , Picratos/antagonistas & inibidores , Selênio/química
14.
Int J Biol Macromol ; 179: 333-344, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33675834

RESUMO

A new strategy regarding the fabrication of chitosan (CS) or ethylene diamine tetraacetic acid (EDTA) on graphene oxide (GO) was performed. The nematocidal potential against Meloidogyne incognita causing root-knot infection in eggplant was tested. The plant immune response was investigated through measuring the photosynthetic pigments, phenols and proline contents, oxidative stress, and antioxidant enzymes activity. Results indicating that, the treatment by pure GO recorded the most mortality percentages of M. incognita 2nd juveniles followed by GO-CS then GO-EDTA. In vivo greenhouse experiments reveals that, the most potent treatment in reducing nematodes was GO-CS which recorded 85.42%, 75.3%, 55.5%, 87.81%, and 81.32% in numbers of 2nd juveniles, galls, females, egg masses and the developmental stage, respectively. The highest chlorophyll a (104%), chlorophyll b (46%), total phenols (137.5%), and free proline (145.2%) were recorded in GO-CS. The highest malondialdehyde (MDA) value was achieved by GO-EDTA (7.22%), and hydrogen peroxide (H2O2) content by 47.51% after the treatment with pure GO. Treatment with GO-CS increased the activities of catalase (CAT) by 98.3%, peroxidase (POD) by 97.52%, polyphenol oxidase (PPO) by 113.8%, and superoxide dismutase (SOD) by 42.43%. The synthesized nanocomposites increases not only the nematocidal activity but also the plant systematic immune response.


Assuntos
Quitosana/farmacologia , Grafite/farmacologia , Nematoides/efeitos dos fármacos , Doenças das Plantas , Imunidade Vegetal/efeitos dos fármacos , Solanum melongena , Animais , Ácido Edético , Infecções por Nematoides/imunologia , Doenças das Plantas/imunologia , Doenças das Plantas/parasitologia , Raízes de Plantas/imunologia , Raízes de Plantas/parasitologia , Solanum melongena/imunologia , Solanum melongena/parasitologia
15.
Environ Sci Pollut Res Int ; 28(23): 29200-29220, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33550524

RESUMO

Different ancillary immunodiagnostic tests were traditionally-established for diagnosis of bovine tuberculosis (BTB) either cellular or humoral as tuberculin skin test (TST), gamma interferon (INF-γ), and indirect enzyme-linked immunosorbent assay (iELISA). These tests had been consumed more time and expensive, and needed sophisticated equipment. To dissolve these problems, serological diagnosis depending on humoral immunity is the aim of this work. Herein, slide-based agglutination test was chosen as a rapid and simple field test based on purified protein derivative (PPD) antigen in addition to some supplementation materials such as Staphylococcal protein A (SPA) and Streptococcal protein G (SPG) to improve detection of BTB antibody in serum samples. Gold nanoparticles (Au NPs) were synthesized by gamma ray, and after complete characterization, the synthesized Au NPs were spherical, small-sized, and stable without any impurities. Addition of such supplementation reagents for serodiagnosis of tuberculosis is of paramount important for the detection of serum antibodies against tuberculosis (TB) and it was considered an easily simple and possible way for improving TB diagnosis. In this work, 70 animals tested positive for TST as well as 20 animals tested negative for TST were used for the diagnosis of BTB depending on humoral immune response based on PPD slide agglutination test using reporter regents (SPA and/or SPG) either native or recombinant. The agglutination density was recorded and read in 4 degrees of positivity with scores ranging from negative (-) to very strong reaction (++++) occurred in different times of agglutination. Groups showed 100% positive reactivates employed in Exp. 1, 2, and 3 with differentiation of slide agglutination test density and was rated from moderate positivity (2+) to very strong (4+), with predominant positivity in density of (3+). Pink-colored intensity is associated with the strengthened reactions between PPD-conjugated Au NPs and serum antibody of each tested samples, which allows for visual rapid, simple, and effective attractive diagnosis of BTB. The specificity and sensitivity of the serological tests were characterized. TST offers the highest sensitivity (83.6%) among the other immunoassays, while the lowest specificity was recorded in TST (57.4%). SPA/SPG offers the best performance in term of combined sensitivity and specificity (performance index) of 175.4. Therefore, the development and uses of detection reagent (such as SPA and/or SPG) slide co-agglutination test (COAT), either native or recombinant (rSPA/SPG) for the detection of TB antibodies based on PPD antigen, as well as the uses of Au NPs rSPA/SPG as detection conjugate based on the same antigen, were also performed as a simple, rapid, sensitive, specific, eco-friendly, and low cost, which shows a great potential in field and lab diagnosis of BTB. So, high reduction in reagents that yields reactions similarly as traditional techniques was needed.


Assuntos
Nanopartículas Metálicas , Tuberculose Bovina , Animais , Proteínas de Bactérias , Bovinos , Ensaio de Imunoadsorção Enzimática , Ouro , Sensibilidade e Especificidade , Proteína Estafilocócica A , Tuberculina , Tuberculose Bovina/diagnóstico
16.
Int J Biol Macromol ; 165(Pt A): 169-186, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32987079

RESUMO

In this research, irradiation by gamma rays was employed as an eco-friendly route for the construction of bimetallic silver-gold nanoparticles (Ag-Au NPs), while Gum Arabic polymer was used as a capping agent. Ag-Au NPs were characterized through UV-Vis., XRD, EDX, HR-TEM, FTIR, SEM/mapping and EDX analysis. Antibiofilm and antimicrobial activities were examined against some bacteria and Candida sp. isolates from diabetic foot patients. Our results revealed that the synthesis of Ag-Au NPs depended on the concentrations of tetra-chloroauric acid and silver nitrate. HR-TEM analysis confirmed the spherical nature and an average diameter of 18.58 nm. FTIR results assured many functional groups in Gum Arabic which assisted in increasing the susceptibility of incorporation with Ag-Au NPs. Our results showed that, Ag-Au NPs exhibited the highest antimicrobial performance against B. subtilis (14.30 mm ZOI) followed by E. coli (12.50 mm ZOI) and C. tropicalis (11.90 mm ZOI). In addition, Ag-Au NPs were able to inhibit the biofilm formation by 99.64%, 94.15%, and 90.79% against B. subtilis, E. coli, and C. tropicalis, respectively. Consequently, based on the promising properties, they showed superior antimicrobial potential at low concentration and continued-phase durability, they can be extensively-used in many pharmaceutical and biomedical applications.


Assuntos
Anti-Infecciosos/síntese química , Pé Diabético/tratamento farmacológico , Goma Arábica/síntese química , Nanopartículas Metálicas/química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/efeitos da radiação , Bacillus subtilis/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Pé Diabético/microbiologia , Pé Diabético/patologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/patogenicidade , Raios gama , Ouro/química , Química Verde , Goma Arábica/química , Goma Arábica/farmacologia , Goma Arábica/efeitos da radiação , Humanos , Nanopartículas Metálicas/efeitos da radiação , Polímeros/síntese química , Polímeros/química , Polímeros/farmacologia , Polímeros/efeitos da radiação , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/patogenicidade , Prata/química , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/patogenicidade
17.
Int J Biol Macromol ; 164: 1370-1383, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32735925

RESUMO

To obtain the synergistic antimicrobial potential of nano-composites conjugated with graphene oxide (GO), an alternative approach was developed throughout the hybridization of chitosan (CS) or ethylene diamine tetraacetic acid (EDTA) with GO. The synthesized GO-nanocomposites were identified by XRD, HRTEM, SEM, FTIR, Zeta potential, and Raman spectroscopy. The antimicrobial activity of GO, GO-CS, and GO-EDTA was investigated against some pathogenic bacteria and Candida sp. Results showed that nano-composites looked flattened and clear, with some lines and folds on the exterior part. SEM images show the basic morphology of GO which owns remarkable holes, crevasses, and indeclinable internal structure. GO-EDTA and GO-CS possess a promising antimicrobial activity against all pathogenic microbes. In-vitro ZOI result verified that they exhibited activity against Escherichia coli (22.0 mm for GO-EDTA and 11.0 mm for GO-CS), Staphylococcus aureus (15.0 mm for GO-EDTA and 10.0 mm for GO-CS) and Candida albicans (22.0 mm for GO-EDTA and 16.0 mm for GO-CS). Microbial cells may be ultimately-damaged when they interact with GO-based nanocomposites due to different mechanisms such as oxidative and membrane stress and wrapping isolation. This work provides revolutionary GO-nanocomposites for increasing the antimicrobial activity against some pathogenic microbes with a cost-effective and eco-friendly approach.


Assuntos
Antibacterianos/química , Antifúngicos/química , Candida/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Bacillus subtilis/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Quitosana/química , Ácido Edético/química , Escherichia coli/efeitos dos fármacos , Grafite/química , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Nanocompostos/química , Oxigênio/química , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Staphylococcus aureus/efeitos dos fármacos , Difração de Raios X
18.
Sci Rep ; 10(1): 11534, 2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-32661303

RESUMO

Water scarcity is now a serious global issue resulting from population growth, water decrease, and pollution. Traditional wastewater treatment plants are insufficient and cannot meet the basic standards of water quality at reasonable cost or processing time. In this paper we report the preparation, characterization and multiple applications of an efficient photocatalytic nanocomposite (CoxNi1-xFe2O4; x = 0.9/SiO2/TiO2/C-dots) synthesized by a layer-by-layer method. Then, the photocatalytic capabilities of the synthesized nanocomposite were extensively-studied against aqueous solutions of chloramine-T trihydrate. In addition, reaction kinetics, degradation mechanism and various parameters affecting the photocatalytic efficiency (nanocomposite dose, chloramine-T initial concentration, and reaction pH) were analyzed in detail. Further, the antimicrobial activities of the prepared nanocomposite were tested and the effect of UV-activation on the antimicrobial abilities of the prepared nanocomposite was analyzed. Finally, a comparison between the antimicrobial abilities of the current nanocomposite and our previously-reported nanocomposite (CoxNi1-xFe2O4; x = 0.9/SiO2/TiO2) had been carried out. Our results revealed that the prepared nanocomposite possessed a high degree of crystallinity, confirmed by XRD, while UV-Vis. recorded an absorption peak at 299 nm. In addition, the prepared nanocomposite possessed BET-surface area of (28.29 ± 0.19 m2/g) with narrow pore size distribution. Moreover, it had semi-spherical morphology, high-purity and an average particle size of (19.0 nm). The photocatalytic degradation efficiency was inversely-proportional to chloramine-T initial concentration and directly proportional to the photocatalyst dose. In addition, basic medium (pH 9) was the best suited for chloramine-T degradation. Moreover, UV-irradiation improved the antimicrobial abilities of the prepared nanocomposite against E. coli, B. cereus, and C. tropicalis after 60 min. The observed antimicrobial abilities (high ZOI, low MIC and more efficient antibiofilm capabilities) were unique compared to our previously-reported nanocomposite. Our work offers significant insights into more efficient water treatment and fosters the ongoing efforts looking at how pollutants degrade the water supply and the disinfection of water-borne pathogenic microorganisms.

19.
RSC Adv ; 10(16): 9274-9289, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35497243

RESUMO

The novelty of the present research is the synthesis of bismuth oxide nanoparticles (Bi2O3 NPs) loaded with the antifungal nystatin drug via gamma rays for increased synergistic antimicrobial potential against some pathogenic bacteria and Candida species. The full characterization of the synthesized Bi2O3 NPs-Nystatin was achieved by XRD, FT-IR, HR-TEM, and SEM/EDX mapping techniques in order to analyze the crystallinity, chemical functional groups, average particle size, morphology, and elemental structure, respectively. The antimicrobial activities of Bi2O3 NPs-Nystatin were examined against pathogenic bacteria and Candida species, including the zone of inhibition (ZOI), minimum inhibitory concentration (MIC), and antibiofilm activity. Additionally, the SEM/EDX method was performed to investigate the mode of action on the treated Candida cells. Our results revealed that Bi2O3 NPs-Nystatin possessed a well-crystallized semi-spherical shape with an average particle size of 27.97 nm. EDX elemental study of the synthesized Bi2O3 NPs-Nystatin indicated a high level of purity. Interestingly, the synthesized Bi2O3 NPs-Nystatin displayed encouraging antibacterial behavior against almost all the tested bacteria and a synergistic antifungal potential toward the investigated Candida species. Additionally, Bi2O3 NPs-Nystatin was found to be a promising antibiofilm agent, resulting in inhibition percentages of 94.15% and 84.85% against C. albicans (1) and E. coli, respectively. The present research provides a revolutionary nano-drug-based solution to address the increasing global resistance of pathogenic microbes at low concentrations, thus offering a new infectious disease treatment technique that is cost effective, eco-friendly, and works in an acceptable time frame.

20.
RSC Adv ; 10(9): 5241-5259, 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35498317

RESUMO

In this paper, we report a layer-by-layer approach for the preparation of a concentric recyclable composite (Co x Ni1-x Fe2O4/SiO2/TiO2; x = 0.9) designed for wastewater treatment. The prepared composite was investigated by X-ray diffraction spectroscopy, high-resolution transmission electron microscopy and scanning electron microscopy (SEM) supported with energy dispersive X-ray (EDX) spectroscopy to analyze crystallinity, average particle size, morphology and elemental composition, respectively. The antimicrobial activities of the prepared composite have been investigated against multi-drug-resistant bacteria and pathogenic fungi using a variety of experiments, such as zone of inhibition, minimum inhibitory concentration, biofilm formation and SEM with EDX analysis of the treated bacterial cells. In addition, the effects of gamma irradiation (with different doses) and UV irradiation on the antibacterial abilities of the prepared composite have been evaluated. Moreover, the effect of gamma irradiation on the crystallite size of the prepared composite has been studied under varying doses of radiation (25 kGy, 50 kGy and 100 kGy). Finally, the photocatalytic efficiency of the prepared composite was tested for halogen-lamp-assisted removal of pyridine (artificial wastewater). Various parameters affecting the efficiency of the photocatalytic degradation, such as photocatalyst dose, pyridine concentration, pH, point of zero charge and the presence of hydrogen peroxide, have been studied. Our results show that the synthesized composite has a well-crystallized semi-spherical morphology with an average particle size of 125.84 nm. In addition, it possesses a high degree of purity, as revealed by EDX elemental analysis. Interestingly, the prepared composite showed promising antibacterial abilities against almost all the tested pathogenic bacteria and unicellular fungi, and this was further improved after gamma and UV irradiation. Finally, the prepared composite was very efficient in the light-assisted degradation of pyridine and its degradation efficiency can be tuned based on various experimental parameters. This work provides a revolutionary nanomaterial-based solution for the global water shortage and water contamination by offering a new wastewater treatment technique that is recyclable, cost effective and has an acceptable time and quality of water.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...