Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioinspir Biomim ; 18(3)2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-37074106

RESUMO

Living tissues dynamically reshape their internal cellular structures through carefully regulated cell-to-cell interactions during morphogenesis. These cellular rearrangement events, such as cell sorting and mutual tissue spreading, have been explained using the differential adhesion hypothesis, which describes the sorting of cells through their adhesive interactions with their neighbors. In this manuscript we explore a simplified form of differential adhesion within a bioinspired lipid-stabilized emulsion approximating cellular tissues. The artificial cellular tissues are created as a collection of aqueous droplets adhered together in a network of lipid membranes. Since this abstraction of the tissue does not retain the ability to locally vary the adhesion of the interfaces through biological mechanisms, instead we employ electrowetting with offsets generated by spatial variations in lipid compositions to capture a simple form of bioelectric control over the tissue characteristics. This is accomplished by first conducting experiments on electrowetting in droplet networks, next creating a model for describing electrowetting in collections of adhered droplets, then validating the model against the experimental measurements. This work demonstrates how the distribution of voltage within a droplet network may be tuned through lipid composition then used to shape directional contraction of the adhered structure using two-dimensional electrowetting events. Predictions from this model were used to explore the governing mechanics for complex electrowetting events in networks, including directional contraction and the formation of new interfaces.


Assuntos
Eletroumectação , Água , Água/química , Morfogênese , Lipídeos
2.
ACS Appl Mater Interfaces ; 14(49): 54558-54571, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36459500

RESUMO

Engineered nanoparticles (NPs) possess diverse physical and chemical properties, which make them attractive agents for targeted cellular interactions within the human body. Once affiliated with the plasma membrane, NPs can become embedded within its hydrophobic core, which can limit the intended therapeutic functionality and affect the associated toxicity. As such, understanding the physical effects of embedded NPs on a plasma membrane is critical to understanding their design and clinical use. Here, we demonstrate that functionalized, hydrophobic gold NPs dissolved in oil can be directly trapped within the hydrophobic interior of a phospholipid membrane assembled using the droplet interface bilayer technique. This approach to model membrane formation preserves lateral lipid diffusion found in cell membranes and permits simultaneous imaging and electrophysiology to study the effects of embedded NPs on the electromechanical properties of the bilayer. We show that trapped NPs enhance ion conductance and lateral membrane tension in 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhPC) bilayers while lowering the adhesive energy of the joined droplets. Embedded NPs also cause changes in bilayer capacitance and area in response to applied voltage, which are nonmonotonic for DOPC bilayers. This electrophysical characterization can reveal NP entrapment without relying on changes in membrane thickness. By evaluating the energetic components of membrane tension under an applied potential, we demonstrate that these nonmonotonic, voltage-dependent responses are caused by reversible clustering of NPs within the unsaturated DOPC membrane core; aggregates form spontaneously at low voltages and are dispersed by higher transmembrane potentials of magnitude similar to those found in the cellular environment. These findings allow for a better understanding of lipid-dependent NP interactions, while providing a platform to study relationships between other hydrophobic nanomaterials and organic membranes.


Assuntos
Nanopartículas , Fosfolipídeos , Humanos , Fosfolipídeos/química , Bicamadas Lipídicas/química , Interações Hidrofóbicas e Hidrofílicas , Ouro/química , Fosfatidilcolinas/química
3.
Sci Rep ; 12(1): 1703, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35105905

RESUMO

Adaptive and bioinspired droplet-based materials are built using the droplet interface bilayer (DIB) technique, assembling networks of lipid membranes through adhered microdroplets. The properties of these lipid membranes are linked to the properties of the droplets forming the interface. Consequently, rearranging the relative positions of the droplets within the network will also alter the properties of the lipid membranes formed between them, modifying the transmembrane exchanges between neighboring compartments. In this work, we achieved this through the use of magnetic fluids or ferrofluids selectively dispersed within the droplet-phase of DIB structures. First, the ferrofluid DIB properties are optimized for reconfiguration using a coupled experimental-computational approach, exploring the ideal parameters for droplet manipulation through magnetic fields. Next, these findings are applied towards larger, magnetically-heterogeneous collections of DIBs to investigate magnetically-driven reconfiguration events. Activating electromagnets bordering the DIB networks generates rearrangement events by separating and reforming the interfacial membranes bordering the dispersed magnetic compartments. These findings enable the production of dynamic droplet networks capable of modifying their underlying membranous architecture through magnetic forces.

4.
ACS Appl Mater Interfaces ; 14(4): 6120-6130, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35073482

RESUMO

In this research, real-time monitoring of lipid membrane disruption is made possible by exploiting the dynamic properties of model lipid bilayers formed at oil-water interfaces. This involves tracking an electrical signal generated through rhythmic membrane perturbation translated into the adsorption and penetration of charged species within the membrane. Importantly, this allows for the detection of membrane surface interactions that occur prior to pore formation that may be otherwise undetected. The requisite dynamic membranes for this approach are made possible through the droplet interface bilayer (DIB) technique. Membranes are formed at the interface of lipid monolayer-coated aqueous droplets submerged in oil. We present how cyclically alternating the membrane area leads to the generation of mechanoelectric current. This current is negligible without a transmembrane voltage until a composition mismatch between the membrane monolayers is produced, such as a one-sided accumulation of disruptive agents. The generated mechanoelectric current is then eliminated when an applied electric field compensates for this asymmetry, enabling measurement of the transmembrane potential offset. Tracking the compensating voltage with respect to time then reveals the gradual accumulation of disruptive agents prior to membrane permeabilization. The innovation of this work is emphasized in its ability to continuously track membrane surface activity, highlighting the initial interaction steps of membrane disruption. In this paper, we begin by validating our proposed approach against measurements taken for fixed composition membranes using standard electrophysiological techniques. Next, we investigate surfactant adsorption, including hexadecyltrimethylammonium bromide (CTAB, cationic) and sodium decyl sulfate (SDS, anionic), demonstrating the ability to track adsorption prior to disruption. Finally, we investigate the penetration of lipid membranes by melittin, confirming that the peptide insertion and disruption mechanics are, in part, modulated by membrane composition.


Assuntos
Bicamadas Lipídicas/metabolismo , Cetrimônio/química , Capacitância Elétrica , Eletrofisiologia/métodos , Bicamadas Lipídicas/química , Meliteno/química , Meliteno/metabolismo , Permeabilidade , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Dodecilsulfato de Sódio/química , Eletricidade Estática , Tensoativos/química
5.
Membranes (Basel) ; 11(5)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925756

RESUMO

The cell membrane is a protective barrier whose configuration determines the exchange both between intracellular and extracellular regions and within the cell itself. Consequently, characterizing membrane properties and interactions is essential for advancements in topics such as limiting nanoparticle cytotoxicity. Characterization is often accomplished by recreating model membranes that approximate the structure of cellular membranes in a controlled environment, formed using self-assembly principles. The selected method for membrane creation influences the properties of the membrane assembly, including their response to electric fields used for characterizing transmembrane exchanges. When these self-assembled model membranes are combined with electrophysiology, it is possible to exploit their non-physiological mechanics to enable additional measurements of membrane interactions and phenomena. This review describes several common model membranes including liposomes, pore-spanning membranes, solid supported membranes, and emulsion-based membranes, emphasizing their varying structure due to the selected mode of production. Next, electrophysiology techniques that exploit these structures are discussed, including conductance measurements, electrowetting and electrocompression analysis, and electroimpedance spectroscopy. The focus of this review is linking each membrane assembly technique to the properties of the resulting membrane, discussing how these properties enable alternative electrophysiological approaches to measuring membrane characteristics and interactions.

6.
J R Soc Interface ; 16(161): 20190652, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31822221

RESUMO

A new method for quantifying lipid-lipid interactions within biomimetic membranes undergoing electrocompression is demonstrated by coupling droplet mechanics and membrane biophysics. The membrane properties are varied by altering the lipid packing through the introduction of cholesterol. Pendant drop tensiometry is used to measure the lipid monolayer tension at an oil-water interface. Next, two lipid-coated aqueous droplets are manipulated into contact to form a bilayer membrane at their adhered interface. The droplet geometries are captured from two angles to provide accurate measurements of both the membrane area and the contact angle between the adhered droplets. Combining the monolayer tension and contact angle measurements enables estimations of the membrane tension with respect to lipid composition. Then, the membrane is electromechanically compressed using a transmembrane voltage. Electrostatic pressure, membrane tension and the work necessary for bilayer thinning are tracked, and a model is proposed to capture the mechanics of membrane compression. The results highlight that a previously unaccounted for energetic term is produced during compression, potentially reflecting changes in the lateral membrane structure. This residual energy is eliminated in cases with cholesterol mole fractions of 0.2 and higher, suggesting that cholesterol diminishes these adjustments.


Assuntos
Materiais Biomiméticos , Lipídeos de Membrana/química , Membranas Artificiais , Modelos Biológicos , Colesterol/química
7.
Soft Matter ; 15(43): 8718-8727, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31553025

RESUMO

Controlled transport within a network of aqueous subcompartments provides a foundation for the construction of biologically-inspired materials. These materials are commonly assembled using the droplet interface bilayer (DIB) technique, adhering droplets together into a network of lipid membranes. DIB structures may be functionalized to generate conductive pathways by enhancing the permeability of pre-selected membranes, a strategy inspired by nature. Traditionally these pathways are generated by dissolving pore-forming toxins (PFTs) in the aqueous phase. A downside of this approach when working with larger DIB networks is that transport is enabled in all membranes bordering the droplets containing the PFT, instead of occurring exclusively between selected droplets. To rectify this limitation, photopolymerizable phospholipids (23:2 DiynePC) are incorporated within the aqueous phase of the DIB platform, forming conductive pathways in the lipid membranes post-exposure to UV-C light. Notably these pathways are only formed in the membrane if both adhered droplets contain the photo-responsive lipids. Patterned DIB networks can then be generated by controlling the lipid composition within select droplets which creates conductive routes one droplet thick. We propose that the incorporation of photo-polymerizable phospholipids within the aqueous phase of DIB networks will improve the resolution of the patterned conductive pathways and reduce diffusive loss within the synthetic biological network.


Assuntos
Bicamadas Lipídicas/química , Fosfolipídeos/química , Reagentes de Ligações Cruzadas/química , Difusão , Técnicas Eletroquímicas , Permeabilidade , Processos Fotoquímicos , Polimerização , Porosidade , Relação Estrutura-Atividade , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...