Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(11): 7557-7563, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38440277

RESUMO

All-solid-state batteries present promising high-energy-density alternatives to conventional Li-ion chemistries, and Li-stuffed garnets based on Li7La3Zr2O12 (LLZO) remain a forerunner for candidate solid-electrolytes. One route to access fast-ion conduction in LLZO phases is to stabilize the cubic LLZO phase by doping on the Li sites with aliovalent ions such as Al3+ or Ga3+. Despite prior attempts, the stabilization of the cubic phase of isostructural Li7La3Sn2O12 (LLSO) by doping on the Li sites has up to now not been realised. Here, we report a novel cubic fast-ion conducting Li7La3Sn2O12-type phase stabilized by doping Ga3+ in place of Li. 0.3 mole of gallium per formula unit of LLSO were needed to fully stabilize the cubic garnet, allowing structural and electrochemical characterizations of the new material. A modified sol-gel synthesis approach is introduced in this study to realise Ga-doping in LLSO, which offers a viable route to preparing new Sn-based candidate solid-electrolytes for all-solid-state battery applications.

2.
ACS Omega ; 7(27): 23421-23444, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35847326

RESUMO

This study describes the preparation of new bimetallic (Fe/Co)-organic framework (Bi-MOF) nanocatalysts with different percentages of iron/cobalt for their use and reuse in adsorption, antibacterial, antioxidant, and catalytic applications following the principles of green chemistry. The prepared catalysts were characterized using several techniques, including X-ray powder diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, and scanning electron microscopy. These techniques proved the formation of MOFs, and the average crystallite sizes were 25.3-53.1, 27.6-67.2, 3.0-18.9, 3.0-12.9, and 3.0-23.6 nm for the Fe-MOF, Co-MOF, 10%Fe:90%Co-MOF, 50%Fe:50%Co-MOF, and 90%Fe:10%Co-MOF samples, respectively. The nanoscale (Fe/Co) Bi-MOF catalysts as efficient heterogeneous solid catalysts showed high catalytic activity with excellent yields and short reaction times in the catalytic reactions of quinoxaline and dibenzoxanthene compounds, in addition to their antioxidant and antibacterial activities. Furthermore, the nanoscale (Fe/Co) Bi-MOF catalysts efficiently removed toxic metal pollutants (Pb2+, Hg2+, Cd2+, and Cu2+) from aqueous solutions with high adsorption capacity.

3.
Sci Rep ; 11(1): 11404, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34075116

RESUMO

A series of ZnO and ZnO/poly(vinyl alcohol) (PVA) catalysts were prepared using sol-gel method. An X-ray diffraction analysis confirmed the existence of the wurtzite ZnO phase, and scanning electron microscopy (SEM) observation revealed the formation of spherical ZnO and ZnO/PVA nanoparticles. The decomposition of methylene blue (MB) and methyl orange (MO) induced by the synthesized pure ZnO and ZnO/PVA nanoparticles was studied under ultraviolet-visible irradiation. Among the catalysts evaluated, ZnO/5PVA was the most active in the decomposition of MB, whereas ZnO/7PVA was the most active catalyst in the decomposition of MO. Moreover, an investigation of the biological activity of pure ZnO and ZnO/PVA indicated that ZnO/5PVA exhibited the best performance in lowering the glucose level in diabetic rats.


Assuntos
Hipoglicemiantes/síntese química , Hipoglicemiantes/farmacologia , Luz , Nanopartículas/química , Álcool de Polivinil/síntese química , Óxido de Zinco/síntese química , Ácidos , Animais , Glicemia/metabolismo , Catálise/efeitos da radiação , Azul de Metileno/química , Azul de Metileno/efeitos da radiação , Álcool de Polivinil/farmacologia , Ratos , Espectrofotometria Ultravioleta , Temperatura , Difração de Raios X , Óxido de Zinco/farmacologia
4.
IET Nanobiotechnol ; 14(8): 680-687, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33108324

RESUMO

This study evaluated the biochemical, molecular, and histopathological mechanisms involved in the hypoglycaemic effect of zinc oxide nanoparticles (ZnONPs) in experimental diabetic rats. ZnONPs were prepared by the sol-gel method and characterised by scanning and transmission electron microscopy (SEM and TEM). To explore the possible hypoglycaemic and antioxidant effect of ZnONPs, rats were grouped as follows: control group, ZnONPs treated group, diabetic group, and diabetic + ZnONPs group. Upon treatment with ZnONPs, a significant alteration in the activities of superoxide dismutase, glutathione peroxidase, and the levels of insulin, haemoglobin A1c, and the expression of cluster of differentiation 4+ (CD4+), CD8+ T cells, glucose transporter type-4 (GLUT-4), tumour necrosis factor, and interleukin-6 when compared to diabetic and their control rats. ZnONPs administration to the diabetic group showed eminent blood glucose control and restoration of the biochemical profile. This raises their active role in controlling pancreas functions to improve glycaemic status as well as the inflammatory responses. Histopathological investigations showed the non-toxic and therapeutic effect of ZnONPs on the pancreas. TEM of pancreatic tissues displayed restoration of islets of Langerhans and increased insulin-secreting granules. This shows the therapeutic application of ZnONPs as a safe anti-diabetic agent and to have a potential for the control of diabetes.


Assuntos
Antígenos CD4/biossíntese , Antígenos CD8/biossíntese , Diabetes Mellitus Experimental/tratamento farmacológico , Transportador de Glucose Tipo 4/biossíntese , Hipoglicemiantes/administração & dosagem , Nanopartículas/administração & dosagem , Óxido de Zinco/química , Animais , Antígenos CD4/genética , Antígenos CD4/metabolismo , Linfócitos T CD4-Positivos/imunologia , Antígenos CD8/imunologia , Antígenos CD8/metabolismo , Linfócitos T CD8-Positivos/imunologia , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Hipoglicemiantes/química , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Masculino , Nanopartículas/química , Ratos , Ratos Wistar
5.
RSC Adv ; 8(37): 20517-20533, 2018 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-35542380

RESUMO

Typical highly porous metal-organic framework (MOFs) materials based on chromium benzenedicarboxylates (Cr-BDC) were prepared through a one-pot hydrothermal synthesis, and were then modified by loading the appropriate ratio of sulfamic acid (SA) using a simple impregnation technique. Pure and modified MIL-101 was characterized by XRD, TEM, SEM and FT-IR measurements. TEM and SEM measurements confirmed that the MIL-101 particles preserved their regular octahedral structure after loading with different weight contents of sulfamic acid. The total number of acid sites and Brønsted to Lewis acid sites ratio (B/L) were examined using potentiometric titration and pyridine adsorption. The acid strength and surface acidity of SA/MIL-101 gradually increased after the modification of Cr-MIL-101 by sulfamic acid crystals up to 55 wt%, then decreased again. The catalytic performance of the solid catalysts was confirmed in the synthesis of 14-phenyl-14H-dibenzo [a,j] xanthene and 7-hydroxy-4-methyl coumarin. In the two reactions, the sample with 55% sulfamic acid loaded on MIL-101 displayed the highest catalytic activity and acidity. The adsorption behaviors of sulfamic acid loaded on MIL-101 materials for methyl orange (MO) as an anionic dye were studied, and were exceptionally suitable for the Langmuir adsorption isotherm. All loaded adsorbents showed high adsorption capacity for methyl orange at 25 °C. The results indicate that the adsorption capacity was modified by changing the amount of sulfamic acid loaded on MIL-101.

6.
Appl Biochem Biotechnol ; 176(8): 2225-41, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26100387

RESUMO

Macrococcus bovicus was locally isolated from soil and used in the green synthesis of nano-scaling silver (NSAg). It was immobilized on a sodic-montmorillonite clay (MMT1) and cetyltrimethylammonium bromide-modified montmorillonite (MMT2) which was also calcined at 300 °C (MMT3). The NSAg clays were characterized by X-ray fluorescence, Fourier transform infrared spectra, X-ray diffractometry, surface area measurement, UV-Vis spectrometry, scanning electron microscope, transmission electron microscope and thermogravimetric analysis. NSAg was confirmed to be included in the interparticular cavities of the clay sheets and its mechanical stability was evidenced. The antimicrobial activity of the NSAg-modified clays was investigated against Staphylococcus aureus, Escherichia coli and Candida albicans using the cup plate and the plate count techniques. The antimicrobial activity of the NSAg clays was confirmed and attributed to the caging of NSAg in MMT cavities. MMT3 was found to inhibit the microbial growth to as high as 65 % as observed from the plate count method. Graphical Abstract Scheme of the biosynthesis of nano-scaling Ag and its immobilization and antimicrobial application.


Assuntos
Silicatos de Alumínio/química , Anti-Infecciosos/farmacologia , Bentonita/farmacologia , Química Verde/métodos , Nanopartículas Metálicas/química , Prata/química , Staphylococcaceae/metabolismo , Argila , Nanopartículas Metálicas/ultraestrutura , Testes de Sensibilidade Microbiana , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcaceae/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Termogravimetria , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA