Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (177)2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34866633

RESUMO

Zebrafish larvae possess a fully functional central nervous system (CNS) with a high regenerative capacity only a few days after fertilization. This makes this animal model very useful for studying spinal cord injury and regeneration. The standard protocol for inducing such lesions is to transect the dorsal part of the trunk manually. However, this technique requires extensive training and damages additional tissues. A protocol was developed for laser-induced lesions to circumvent these limitations, allowing for high reproducibility and completeness of spinal cord transection over many animals and between different sessions, even for an untrained operator. Furthermore, tissue damage is mainly limited to the spinal cord itself, reducing confounding effects from injuring different tissues, e.g., skin, muscle, and CNS. Moreover, hemi-lesions of the spinal cord are possible. Improved preservation of tissue integrity after laser injury facilitates further dissections needed for additional analyses, such as electrophysiology. Hence, this method offers precise control of the injury extent that is unachievable manually. This allows for new experimental paradigms in this powerful model in the future.


Assuntos
Traumatismos da Medula Espinal , Regeneração da Medula Espinal , Animais , Axônios/fisiologia , Modelos Animais de Doenças , Larva , Regeneração Nervosa/fisiologia , Reprodutibilidade dos Testes , Medula Espinal/patologia , Medula Espinal/cirurgia , Regeneração da Medula Espinal/fisiologia , Peixe-Zebra
2.
Curr Opin Genet Dev ; 64: 44-51, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32604009

RESUMO

Spinal cord injuries disrupt signalling from the brain leading to loss of limb, locomotion, sexual and bladder function, usually irreversible in humans. In zebrafish, recovery of function occurs in a few days for larvae or a few weeks for adults due to regrowth of axons and de novo neurogenesis. Together with its genetic amenability and optical clarity, this makes zebrafish a powerful animal model to study circuit reorganisation after spinal cord injuries. With the fast evolution of techniques, we can forecast significative improvements of our knowledge of the mechanisms leading to successful or failed recovery of spinal cord function. We review here the present knowledge on the subject, the new technological approaches and we propose future directions of research.


Assuntos
Modelos Animais de Doenças , Vias Neurais/fisiologia , Neurogênese , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/terapia , Proteínas de Peixe-Zebra/metabolismo , Animais , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA