Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 31(42): 11649-58, 2015 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-26451684

RESUMO

Different synthesis routes have been implemented to prepare macroporous monoliths with vinyl pendant groups and micrometric skeletons and through-pore sizes. A standard process combining the synthesis of a widely used (methyltrimethoxysilane/tetramethoxysilane) (MTMS/TMOS) hybrid silica monolith and the postsilanization with vinyltrimethoxysilane (VTMS) was used as reference material (Vgr-MTMS). An alternative "one-pot" procedure was used to obtain vinylized hybrid monoliths. Two VTMS/TMOS hybrid based monoliths were successfully prepared starting from 20% (w) and 80% (w/w) of VTMS, respectively, called 20-VTMS and 80-VTMS. Monoliths were characterized by SEM, nitrogen-adsorption isotherm, and (29)Si MAS NMR spectroscopy. One-pot synthesis allowed to obtain higher vinyl contents (15.9 and 61.5 mol % of Si atoms bonded to vinyl groups respectively for 20-VTMS and 80-VTMS) than for the postgrafted one (7.1%). Accessibility of vinyl groups was determined by the extent of bromination reactions followed by FTIR-ATR spectroscopy. Bromination with reaction yields were higher than 80% for all materials (80%, 85%, and 100% for 80-VTMS, 20-VTMS, and Vgr-MTMS respectively), with no diffusion issues The chemical reactivity of the pendant vinyl groups was investigated through radical-mediated thiol-ene reaction and radical-initiated bisulfite addition. Reaction yields for the two VTMS hybrid monoliths were quite lower (4-6%) than those obtained (about 50%) for the Vgr-MTMS monolith. The difference in reactivity was attributed to the steric hindrance of the vinyl moieties at the surface of hybrid materials. However, the lower reactivity of vinyl groups is compensated by their considerably higher surface density. Thus, hybrid monoliths are advantageous over their grafted counterparts, due to their higher hydrolytic stability and to the greater simplicity of the one-pot process. A chromatographic application exemplifies their interest and performances in separation science.

2.
J Chromatogr A ; 1367: 161-6, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25280874

RESUMO

Sulfonylureas (SUs) are one of the most widely used herbicides to control weeds in crops. Herein, capillary electrophoresis (CE) was used to determine four sulfonylureas in natural waters, namely chlorsulfuron (CS), iodosulfuron methyl (IM), metsulfuron methyl (MSM) and mesosulfuron methyl (MSS). First of all, a bare silica capillary was chosen with 10mM of 1-butyl-3-methylimidazolium tetrafluoroborate (bminBF4) as electrophoretic buffer (pH 9.6) containing 2 mg L(-1) of surfactant-coated single-wall carbon nanotubes (SC-SWCNTs). A dramatic deviation in migration times was observed. Therefore, a poly(diallyldimethylammonium) chloride (PDADMAC) statically coated cationic capillary was used to improve repeatability and to alter the selectivity of the separation. The electroosmotic flow (EOF) measurement revealed that the SC-SWCNTs were strongly adsorbed at the surface of the PDADMAC coating even in the absence of the surfactant-coated nanotubes in the electrolyte buffer. Consequently, a stable strong cathodic EOF and excellent repeatabilities were obtained with relative standard deviations (RSDs) on migration times and on corrected peak areas below 0.9 and 1.5%, respectively. The separation of the SUs was conducted in only 6 min. No regeneration of the coating between analyses was necessary, and high peak efficiencies up to 173,000 theoretical plates were obtained. The bi-layer coating was subsequently used to analyze sulfonylureas in tap water, in several mineral waters as well as in underground waters spiked with SUs and directly injected into the CE capillary.


Assuntos
Eletroforese Capilar/métodos , Nanotubos de Carbono/química , Dodecilsulfato de Sódio/química , Ureia/análise , Compostos Alílicos/química , Eletrólitos/química , Eletro-Osmose , Imidazóis/química , Polietilenos/química , Compostos de Amônio Quaternário/química , Tensoativos/química
3.
J Sep Sci ; 36(13): 2049-62, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23610023

RESUMO

Trends in LC focus on dedicated separation developments spanning different fields of applications ranging from sample preparation to miniaturization. Chromatographic performances result from the porous media, its implantation inside the "column," and its surface functionalization. Because molecular interactions govern chromatographic phenomena, surface functionalization is still a hot research topic. Besides standard approaches for surface functionalization, the use of new surface chemistry reactions opens new perspectives. Click chemistry belongs to this new class of chemical reactions, characterized by its specificity, compatibility with aqueous media, and high reaction yields. In this frame, we review the use of click chemistry reactions in chromatographic sciences. In a first part, we present click chemistry with a specific focus on its implementation in stationary phases. The use of these new clicked materials is detailed and discussed with respect to the chromatographic mode.

4.
J Sep Sci ; 36(6): 993-1001, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23495113

RESUMO

In this work, we developed a surface functionalization way of silica monoliths with a rapid, simple, versatile, and localizable photografting step. The elaboration of a photoreactive layer at the surface of monoliths was first optimized. The functionalization with [γ-(methacryloyloxy)propyl]trimethoxysilane at 80°C in a hydro-organic solution containing triethylamine as catalyst allows reachng the highest density of methacrylate photoactive moieties on silica surfaces. These methacrylate reactive surfaces were subsequently photografted within few minutes with acrylate monomers bearing alkyl chains (C12 and C18). The photografting efficiency was determined by monitoring the retentive properties of monoliths in the RP mode. The retention factors are of the same order of magnitude as highly retentive columns obtained by modification of silica surface with long-alkyl chain silanes or by thermal polymerization of long-alkyl chain monomers. It was also verified that such grafting neither impaired the efficiency of the monolithic stationary phase (Hmin = 6-8 µm in nano-LC) nor its permeability (about 6 × 10(-14) m(2)). Further, it was also demonstrated that photografting is localizable in nonmasked defined areas. Results obtained in anion-exchange chromatography after photopolymerization of [2-(methacryloyloxy)ethyl]trimethylammonium chloride are presented as well to demonstrate the versatility of the developed approach.

5.
J Sep Sci ; 34(15): 1805-10, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21728231

RESUMO

In recent years, metal oxides such as titania have been commercially available as chromatographic beds that can potentially be used to achieve novel separations of polar compounds. For example ß blockers, which are more often encountered in environmental sciences, have a wide range of polarity, and their basic character leads to difficult sample treatment and separation on conventional silica-based sorbents. The contribution of titania to the selective analysis of nine ß blockers was evaluated in terms of retention mechanisms observed in hydrophilic interaction LC using acetonitrile/water mobile phases with various additives. The mobile phase additives enabled to control the ß blocker charge as well as the titania surface charge. Depending on their respective ionic state, various retention mechanisms were identified at low water contents (<40%), including mainly adsorption mixed with hydrophilic interaction LC partition, ion exchange and ion exclusion. An unexpected retention was also observed for high water content and high pH, changing the selectivity of the support.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...