Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Differ ; 22(1): 58-73, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25236395

RESUMO

Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as 'accidental cell death' (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. 'Regulated cell death' (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death.


Assuntos
Apoptose , Transdução de Sinais , Animais , Humanos , Terminologia como Assunto
2.
Curr Med Chem ; 21(26): 3021-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24735366

RESUMO

Activation of hypoxia-inducible factor 1 (HIF-1) signaling is observed in a broad range of human cancers due to tumor hypoxia and epigenetic mechanisms. HIF-1 activation leads to the transcription of a plethora of target genes that promote physiological changes associated with therapeutic resistance, including the inhibition of apoptosis and senescence and the activation of drug efflux and cellular metabolism. As a result, targeting HIF-1 represents an attractive strategy to enhance the efficacy of current therapies as well as reduce resistance to chemotherapy in tumors. Approaches to inhibit HIF-1 signaling have primarily focused on reducing HIF-1α protein levels, by inducing its degradation or inhibiting its transcription, inhibiting HIF-1-mediated transcription, or disrupting the formation of the HIF-1 transcription factor complex. To date, multiple preclinical and clinical agents have been identified that effectively inhibit HIF-1 activity through various mechanisms, likely accounting for a portion of their anti-tumor efficacy. This review aims to provide an overview of our current understanding of the role of HIF-1 in therapeutic resistance and discuss the ongoing effort to develop HIF-1 inhibitors as an anti-cancer strategy.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias/tratamento farmacológico , Transdução de Sinais , Apoptose , Humanos , Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Terapia de Alvo Molecular , Neoplasias/patologia
3.
Exp Oncol ; 34(3): 160-4, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23070000

RESUMO

Research on TNF-related apoptosis-inducing ligand (TRAIL) and TRAIL receptors has advanced tremendously over the past 17 years. Initial observations of TRAIL and TRAIL receptor-mediated tumor cell toxicity led to enthusiasm of exploiting this selective, malignant cell killing for cancer therapy. Further examination revealed aberrant TRAIL signaling in some cancer cells leading to protection from TRAIL-mediated cell death. Mechanisms of TRAIL resistance often involve decreased expression or activity of initiator caspase-8, crucial for complete TRAIL signal transduction. Caspase-8 mutations, epigenetic silencing, decrease in stability, and incomplete activation have been reported. This article reviews the discovery of TRAIL and TRAIL receptors and subsequent studies that reveal how expression and function of caspase-8 are central to TRAIL-mediated cell death. This article is part of a Special Issue entitled "Apoptosis: Four Decades Later".


Assuntos
Apoptose , Caspase 8/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Apoptose/genética , Apoptose/fisiologia , Caspase 8/genética , Epigênese Genética , Regulação da Expressão Gênica/genética , Humanos , Mutação , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Transdução de Sinais , Ligante Indutor de Apoptose Relacionado a TNF/genética
4.
Cell Death Differ ; 19(1): 107-20, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21760595

RESUMO

In 2009, the Nomenclature Committee on Cell Death (NCCD) proposed a set of recommendations for the definition of distinct cell death morphologies and for the appropriate use of cell death-related terminology, including 'apoptosis', 'necrosis' and 'mitotic catastrophe'. In view of the substantial progress in the biochemical and genetic exploration of cell death, time has come to switch from morphological to molecular definitions of cell death modalities. Here we propose a functional classification of cell death subroutines that applies to both in vitro and in vivo settings and includes extrinsic apoptosis, caspase-dependent or -independent intrinsic apoptosis, regulated necrosis, autophagic cell death and mitotic catastrophe. Moreover, we discuss the utility of expressions indicating additional cell death modalities. On the basis of the new, revised NCCD classification, cell death subroutines are defined by a series of precise, measurable biochemical features.


Assuntos
Apoptose , Autofagia , Células/metabolismo , Células/patologia , Necrose , Terminologia como Assunto , Animais , Caspases/metabolismo , Humanos , Mitose
5.
Int J Oncol ; 37(1): 5-14, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20514391

RESUMO

Humans around the globe probably discovered natural remedies against disease and cancer by trial and error over the millennia. Biomolecular archaeological analyses of ancient organics, especially plants dissolved or decocted as fermented beverages, have begun to reveal the preliterate histories of traditional pharmacopeias, which often date back thousands of years earlier than ancient textual, ethnohistorical, and ethnological evidence. In this new approach to drug discovery, two case studies from ancient Egypt and China illustrate how ancient medicines can be reconstructed from chemical and archaeological data and their active compounds delimited for testing their anticancer and other medicinal effects. Specifically, isoscopoletin from Artemisia argyi, artemisinin from Artemisia annua, and the latter's more easily assimilated semi-synthetic derivative, artesunate, showed the greatest activity in vitro against lung and colon cancers. In vivo tests of these compounds previously unscreened against lung and pancreatic cancers are planned for the future.


Assuntos
Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/farmacologia , Bebidas , Extratos Vegetais/química , Arqueologia , Bebidas/análise , China , Descoberta de Drogas/história , Descoberta de Drogas/métodos , Antigo Egito , Fermentação/fisiologia , História da Medicina , História Antiga , Humanos , Extratos Vegetais/farmacologia
6.
Cell Death Differ ; 16(8): 1093-107, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19373242

RESUMO

Cell death is essential for a plethora of physiological processes, and its deregulation characterizes numerous human diseases. Thus, the in-depth investigation of cell death and its mechanisms constitutes a formidable challenge for fundamental and applied biomedical research, and has tremendous implications for the development of novel therapeutic strategies. It is, therefore, of utmost importance to standardize the experimental procedures that identify dying and dead cells in cell cultures and/or in tissues, from model organisms and/or humans, in healthy and/or pathological scenarios. Thus far, dozens of methods have been proposed to quantify cell death-related parameters. However, no guidelines exist regarding their use and interpretation, and nobody has thoroughly annotated the experimental settings for which each of these techniques is most appropriate. Here, we provide a nonexhaustive comparison of methods to detect cell death with apoptotic or nonapoptotic morphologies, their advantages and pitfalls. These guidelines are intended for investigators who study cell death, as well as for reviewers who need to constructively critique scientific reports that deal with cellular demise. Given the difficulties in determining the exact number of cells that have passed the point-of-no-return of the signaling cascades leading to cell death, we emphasize the importance of performing multiple, methodologically unrelated assays to quantify dying and dead cells.


Assuntos
Morte Celular , Apoptose , Células Eucarióticas/citologia , Citometria de Fluxo , Guias como Assunto , Humanos , Immunoblotting , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Espectrometria de Fluorescência
7.
Cell Death Differ ; 16(1): 3-11, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18846107

RESUMO

Different types of cell death are often defined by morphological criteria, without a clear reference to precise biochemical mechanisms. The Nomenclature Committee on Cell Death (NCCD) proposes unified criteria for the definition of cell death and of its different morphologies, while formulating several caveats against the misuse of words and concepts that slow down progress in the area of cell death research. Authors, reviewers and editors of scientific periodicals are invited to abandon expressions like 'percentage apoptosis' and to replace them with more accurate descriptions of the biochemical and cellular parameters that are actually measured. Moreover, at the present stage, it should be accepted that caspase-independent mechanisms can cooperate with (or substitute for) caspases in the execution of lethal signaling pathways and that 'autophagic cell death' is a type of cell death occurring together with (but not necessarily by) autophagic vacuolization. This study details the 2009 recommendations of the NCCD on the use of cell death-related terminology including 'entosis', 'mitotic catastrophe', 'necrosis', 'necroptosis' and 'pyroptosis'.


Assuntos
Morte Celular , Terminologia como Assunto , Animais , Humanos
12.
Cell Death Differ ; 8(11): 1066-75, 2001 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11687885

RESUMO

Knowledge of the emerging pathways of cell death downstream of the p53 tumor suppressor and the TRAIL death-inducing ligand is suggesting ways to improve therapeutic design in cancer. In contrast to its unique G1 cell cycle arresting mechanism that is maintained by p21(WAF1), there are signals transduced by p53 to multiple apoptotic effectors perhaps due to the importance of apoptosis in suppressing tumors. There is evidence for cytoplasmic as well as mitochondrial activation of caspases downstream of p53, although in some cell lineages the signal ultimately involves the mitochondria. The TRAIL signaling pathway appears promising for therapeutic development despite sharing some similarities with the toxic Fas and TNF pathways, in terms of effector molecules and downstream signals. One of the key findings is the tissue specificity of cell death responses, a feature that could be exploited in strategies to widen the therapeutic window of combination cancer therapies. Efforts continue to develop p53-targeted cancer therapy, and novel clues to enhance or block specific effectors may improve therapeutic design.


Assuntos
Glicoproteínas de Membrana/metabolismo , Neoplasias/tratamento farmacológico , Transdução de Sinais/fisiologia , Fator de Necrose Tumoral alfa/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose/fisiologia , Proteínas Reguladoras de Apoptose , Desenho de Fármacos , Humanos , Receptores do Ligante Indutor de Apoptose Relacionado a TNF , Receptores do Fator de Necrose Tumoral/genética , Ligante Indutor de Apoptose Relacionado a TNF , Proteína Supressora de Tumor p53/genética
13.
EMBO J ; 20(22): 6404-13, 2001 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-11707411

RESUMO

The tumor suppressor protein p53 is a transcription factor that is frequently mutated in human cancers. In response to DNA damage, p53 protein is stabilized and activated by post-translational modifications that enable it to induce either apoptosis or cell cycle arrest. Using a novel yeast p53 dissociator assay, we identify hADA3, a part of histone acetyltransferase complexes, as an important cofactor for p53 activity. p53 and hADA3 physically interact in human cells. This interaction is enhanced dramatically after DNA damage due to phosphorylation event(s) in the p53 N-terminus. Proper hADA3 function is essential for full transcriptional activity of p53 and p53-mediated apoptosis.


Assuntos
Proteínas de Saccharomyces cerevisiae , Fatores de Transcrição/química , Fatores de Transcrição/fisiologia , Proteína Supressora de Tumor p53/metabolismo , Acetiltransferases/metabolismo , Antibióticos Antineoplásicos/farmacologia , Apoptose , Linhagem Celular , Células Cultivadas , DNA/metabolismo , Dano ao DNA , DNA Complementar/metabolismo , Relação Dose-Resposta a Droga , Doxorrubicina/farmacologia , Citometria de Fluxo , Biblioteca Gênica , Genes Reporter , Genes p53/genética , Células HeLa , Histona Acetiltransferases , Humanos , Modelos Biológicos , Mutação , Oligonucleotídeos Antissenso/farmacologia , Fosforilação , Plasmídeos/metabolismo , Testes de Precipitina , Ligação Proteica , Processamento de Proteína Pós-Traducional , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica , Transfecção , Células Tumorais Cultivadas , Raios Ultravioleta
14.
Digestion ; 64(2): 75-80, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11684819

RESUMO

BACKGROUND/AIMS: We investigated the effect of the peroxisome proliferator-activated receptor-gamma (PPAR-gamma) agonist pioglitazone on growth and TRAIL-induced apoptosis in carcinoid cells. METHODS: Carcinoid cells were incubated without and with pioglitazone. Effects on growth were examined by cell count and cell cycle analysis. p21waf1/cip1 expression was determined by Western blotting. Cytotoxicity assay was performed by FACS analysis. RESULTS: Pioglitazone suppressed the growth and induced apoptosis of carcinoid cells. Additionally, pioglitazone significantly enhanced carcinoid cell death induced by tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL). The enhancement of TRAIL-induced apoptosis was associated with an upregulation of cyclin-dependent kinase inhibitor p21waf1/cip1 in pioglitazone-treated carcinoid cells. Importantly, overexpression of p21waf1/cip1 in carcinoid cells by adenoviral gene transfer of p21 sensitized them to TRAIL-induced apoptosis. CONCLUSIONS: These results suggest that pioglitazone inhibits cell growth and sensitizes cells to TRAIL-induced apoptosis by induction of p21waf1/cip1. Therefore, pioglitazone can be an effective therapeutic adjuvant for the treatment of carcinoid tumors.


Assuntos
Apoptose/efeitos dos fármacos , Tumor Carcinoide/fisiopatologia , Ciclinas/efeitos dos fármacos , Inibidores Enzimáticos/metabolismo , Hipoglicemiantes/farmacologia , Glicoproteínas de Membrana/efeitos dos fármacos , Receptores Citoplasmáticos e Nucleares/agonistas , Receptores Citoplasmáticos e Nucleares/fisiologia , Tiazóis/farmacologia , Tiazolidinedionas , Fatores de Transcrição/agonistas , Fatores de Transcrição/farmacologia , Fator de Necrose Tumoral alfa/efeitos dos fármacos , Apoptose/fisiologia , Proteínas Reguladoras de Apoptose , Western Blotting , Tumor Carcinoide/genética , Contagem de Células , Divisão Celular/efeitos dos fármacos , Divisão Celular/fisiologia , Inibidor de Quinase Dependente de Ciclina p21 , Ciclinas/fisiologia , Humanos , Técnicas In Vitro , Glicoproteínas de Membrana/fisiologia , Pioglitazona , Receptores Citoplasmáticos e Nucleares/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ligante Indutor de Apoptose Relacionado a TNF , Fatores de Transcrição/genética , Células Tumorais Cultivadas/efeitos dos fármacos , Células Tumorais Cultivadas/fisiologia , Fator de Necrose Tumoral alfa/fisiologia
15.
Exp Hematol ; 29(8): 962-70, 2001 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-11495702

RESUMO

OBJECTIVE: We have previously shown that Adenovirus-p53 (Ad-p53) is a potent inducer of apoptosis in myeloma cells expressing nonfunctional p53 and low levels of bcl-2 and that Apo2L/TRAIL is a potent inducer of apoptosis, independent of bcl-2. A study was designed to test the synergy between Ad-p53 and Apo2L/TRAIL in the induction of apoptosis in relation to the expression of DR4/DR5 and DcR1, in cells undergoing Ad-p53-induced apoptosis. METHODS: Replication deficient Ad-p53 and human recombinant Apo2L/TRAIL were used. Myeloma cells with mutated/w.t. p53 and varying expression of bcl-2 were used to test the effect of Ad-p53, Apo2L/TRAIL, or both, on apoptosis, measured by annexin V. RESULTS: Treatment with Ad-p53 resulted in a dose-dependent apoptosis concomitant with a dose-dependent increase in the expression of DR4/DR5 and a decrease in the expression of DcR1, in Ad-p53-sensitive cell lines. In these cells, addition of Apo2L/TRAIL to cells treated with Ad-p53 resulted in a dose-dependent increase in apoptosis. Myeloma cells resistant to Ad-p53 had high levels of DR4/DR5 and high levels of DcR1 and treatment with Ad-p53 did not reduce the expression of DcR1. Also, addition of Apo2L/TRAIL to Ad-p53 did not affect the level of apoptosis beyond the level of apoptosis observed with Apo2L/TRAIL alone. CONCLUSIONS: 1) Cotreatment with Ad-p53 and Apo2L/TRAIL resulted in additive apoptosis in myeloma cells expressing nonfunctional p53 and low levels of bcl-2. 2) Resistance to Ad-p53 or to the combination of Ad-p53 and Apo2L/TRAIL was not due to the lack of adenovirus receptor (CAR) or low expression of DR4/DR5 but rather due to the relatively high expression of DcR1 receptor.


Assuntos
Apoptose/fisiologia , Genes p53 , Glicoproteínas de Membrana/fisiologia , Mieloma Múltiplo/patologia , Fator de Necrose Tumoral alfa/fisiologia , Proteína Supressora de Tumor p53/metabolismo , Adenoviridae , Anexina A5/análise , Proteínas Reguladoras de Apoptose , Genes bcl-2 , Antígeno HLA-DR4/análise , Antígeno HLA-DR4/genética , Antígeno HLA-DR5/análise , Antígeno HLA-DR5/genética , Humanos , Cinética , Glicoproteínas de Membrana/genética , Mutagênese , Proteínas Proto-Oncogênicas c-bcl-2/análise , Proteínas Recombinantes/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF , Transfecção/métodos , Células Tumorais Cultivadas , Fator de Necrose Tumoral alfa/genética , Proteína Supressora de Tumor p53/genética
16.
J Biol Chem ; 276(41): 37879-86, 2001 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-11486001

RESUMO

The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a potent inducer of apoptosis in tumor cell lines, whereas normal cells appear to be protected from its cytotoxic effects. Therefore TRAIL holds promise as a potential therapeutic agent against cancer. To elucidate some of the critical factors that contribute to TRAIL resistance, we performed a genetic screen in the human colon carcinoma cell line SW480 by infecting this TRAIL-sensitive cell line with a human placental cDNA retroviral library and isolating TRAIL-resistant clones. Characterization of the resulting clones for inhibitors of TRAIL-induced death (ITIDs) led to the isolation of c-FLIP(S), Bax inhibitor 1, and Bcl-XL as candidate suppressors of TRAIL signaling. We have demonstrated that c-FLIP(S) and Bcl-XL are sufficient when overexpressed to convey resistance to TRAIL treatment in previously sensitive cell lines. Furthermore both c-FLIP(S) and Bcl-XL protected against overexpression of the TRAIL receptors DR4 and KILLER/DR5. When c-FLIP(S) and Bcl-XL were overexpressed together in SW480 and HCT 116, an additive inhibitory effect was observed after TRAIL treatment suggesting that these two molecules function in the same pathway in the cell lines tested. Furthermore, we have demonstrated for the first time that a proapoptotic member of the Bcl-2 family, Bax, is required for TRAIL-mediated apoptosis in HCT 116 cells. Surprisingly, we have found that the serine/threonine protein kinase Akt, which is an upstream regulator of both c-FLIP(S) and Bcl-XL, is not sufficient when overexpressed to protect against TRAIL in the cell lines tested. These results suggest a key role for c-FLIP(S), Bcl-XL, and Bax in determining tumor cell sensitivity to TRAIL.


Assuntos
Neoplasias do Colo/patologia , Glicoproteínas de Membrana/antagonistas & inibidores , Proteínas Serina-Treonina Quinases , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Proteínas Reguladoras de Apoptose , Sequência de Bases , Linhagem Celular , Separação Celular , Células Clonais , Neoplasias do Colo/genética , Primers do DNA , Citometria de Fluxo , Humanos , Glicoproteínas de Membrana/fisiologia , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt , Ligante Indutor de Apoptose Relacionado a TNF , Células Tumorais Cultivadas , Fator de Necrose Tumoral alfa/fisiologia
17.
Oncogene ; 20(34): 4601-12, 2001 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-11498783

RESUMO

The p53 tumor suppressor plays a key role in the cell's response to genotoxic stress and loss of this 'guardian of the genome' is an important step in carcinogenesis. The ability of p53 to induce apoptosis through transactivation of its target genes is critical for its function as tumor suppressor. We have found that overexpression of p53 in human cancer cell lines resulted in apoptosis as measured by PARP cleavage. Furthermore we observed cleavage of both caspase 9 and caspase 8 after overexpression of p53 and found that p53-dependent apoptosis was inhibited by either cellular (c-Flip-s, Bcl-X(L)) or pharmacological inhibitors of caspase 8 or caspase 9 respectively. These results indicate that p53 is mediating apoptosis through both the mitochondrial and death receptor pathways. To elucidate the relevant p53 target genes and examine the caspase pathways utilized in vivo, we treated p53+/+ and age matched p53-/- mice with 5 Gy ionizing radiation or 0.5 mg/animal dexamethasone and harvested tissues at 0, 6 and 24 h. We examined the mRNA expression of p21, bax, KILLER/DR5, FAS/APO1 and EI24/PIG8 using TaqMan real time quantitative RT-PCR in the spleen, thymus and small intestine. Although the basal mRNA levels of these genes did not depend on the presence of p53, we observed a p53-dependent induction of all these targets in response to gamma-irradiation and a p53-independent regulation for p21 and KILLER/DR5 in response to dexamethasone. Furthermore, we have demonstrated that the relative induction of these p53 target genes is tissue specific. Despite observing otherwise similar levels of death in these tissues, our findings suggest that in some cases apoptosis mediated through p53 occurs by redundant pathways or by a 'group effect' while in other tissues one or few targets may play a key role in p53-dependent apoptosis. Surprisingly, KILLER/DR5 is the dominantly induced transcript in both the spleen and small intestine suggesting a potentially important role for this p53 target gene in vivo.


Assuntos
Apoptose , Proteínas Proto-Oncogênicas c-bcl-2 , Receptores do Fator de Necrose Tumoral/fisiologia , Proteína Supressora de Tumor p53/fisiologia , Animais , Caspase 8 , Caspase 9 , Caspases/fisiologia , Inibidor de Quinase Dependente de Ciclina p21 , Ciclinas/biossíntese , Ciclinas/genética , Humanos , Intestino Delgado/citologia , Intestino Delgado/metabolismo , Intestino Delgado/efeitos da radiação , Camundongos , Camundongos Knockout , Mitocôndrias/fisiologia , Proteínas Proto-Oncogênicas/biossíntese , Proteínas Proto-Oncogênicas/genética , RNA Mensageiro/biossíntese , Radiação Ionizante , Receptores do Ligante Indutor de Apoptose Relacionado a TNF , Receptores do Fator de Necrose Tumoral/biossíntese , Receptores do Fator de Necrose Tumoral/genética , Baço/citologia , Baço/metabolismo , Baço/efeitos da radiação , Ativação Transcricional , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/genética , Proteína X Associada a bcl-2 , Receptor fas/biossíntese , Receptor fas/genética
18.
Clin Cancer Res ; 7(6): 1688-97, 2001 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-11410508

RESUMO

Allelic loss of chromosome 8p21-22 occurs frequently in cancer, including lung and head and neck squamous cell cancer. The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptors, including proapoptotic DR4 and KILLER/DR5, are located on 8p21-22. TRAIL receptors are candidate tumor suppressor genes, because their inactivation would be expected to result in deficient apoptotic signaling. To investigate the involvement of DR4 in human cancer, we have determined the genomic structure of DR4 and screened 31 lung cancer cell lines [14 small cell lung cancer and 17 non-small cell lung cancer (NSCLC)], many with deletions at 8p21-22, and 21 primary NSCLC samples for mutations in DR4. We found two missense alterations in the ectodomain of DR4. One, at nucleotide 626, changes a cytosine to a guanine (C626G) and results in a substitution of an arginine for threonine. The other, at nucleotide 422, changes a guanine to adenine (G422A) and results in a substitution of a histidine for arginine. Using genomic DNA sequencing and RFLP analysis, we show that these two alterations cosegregated in 96% of all of the samples (n = 243) evaluated (tumor and normal). The frequency of being homozygous for both altered alleles was 35% in the lung cancer cell lines but only 13% in age- and race-matched controls, which was a significant increase (chi(2) = 5.2, P = 0.023). The frequency of homozygosity for both alleles was also significantly increased in the primary NSCLC samples (chi(2) = 9.2, P = 0.002) as compared with the age- and race-matched controls. To determine whether the altered alleles are specific for lung cancer, we evaluated 19 head and neck squamous cell cancer and 25 gastric adenocarcinoma samples. Forty-seven % of the former and 44% of the latter were homozygous for both the C626G and G422A alterations, and this was significantly elevated relative to age- and race-matched controls (chi(2) = 8.6, P = 0.003 and chi(2) = 8.2, P = 0.004). These alterations result in amino acid changes in or near the ligand-binding domain of DR4 and, based on the crystal structure of DR5 and its homology with DR4, have the potential to affect TRAIL binding to DR4. Our results suggest that the altered DR4 alleles may be associated with, and should be investigated additionally as potential markers for, predisposition to common malignancies.


Assuntos
Neoplasias de Cabeça e Pescoço/genética , Neoplasias Pulmonares/genética , Receptores do Fator de Necrose Tumoral/química , Receptores do Fator de Necrose Tumoral/genética , Adenina/química , Adenocarcinoma/etnologia , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Alelos , Sequência de Aminoácidos , Proteínas Reguladoras de Apoptose , População Negra , Carcinoma Pulmonar de Células não Pequenas/etnologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Estudos de Casos e Controles , Cromossomos Humanos Par 8 , Éxons , Feminino , Guanina/química , Neoplasias de Cabeça e Pescoço/etnologia , Neoplasias de Cabeça e Pescoço/metabolismo , Heterozigoto , Homozigoto , Humanos , Íntrons , Ligantes , Neoplasias Pulmonares/etnologia , Neoplasias Pulmonares/metabolismo , Masculino , Glicoproteínas de Membrana/química , Pessoa de Meia-Idade , Modelos Genéticos , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Polimorfismo Genético , Polimorfismo de Fragmento de Restrição , Estrutura Terciária de Proteína , Receptores do Ligante Indutor de Apoptose Relacionado a TNF , Receptores do Fator de Necrose Tumoral/metabolismo , Homologia de Sequência de Aminoácidos , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF , Células Tumorais Cultivadas , Fator de Necrose Tumoral alfa/química , População Branca
19.
Ann Med ; 33(2): 113-22, 2001 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11327114

RESUMO

The mammalian cell cycle is exquisitely controlled by a 'machinery' composed of cyclin-dependent kinases and their binding partners, the cyclins. These kinases regulate transitions into DNA synthesis and mitosis, and their inactivity contributes to cellular quiescence, differentiation and senescence. Cell cycle transitions are, in turn, controlled by checkpoints that monitor ribonucleotide pools, oxygen tension, the extracellular environment, growth signalling programmes, the status of DNA replication, and the mitotic spindle apparatus. Genes positively controlling cell cycle checkpoints can be targets for oncogenic activation in cancer, whereas negative regulators, such as tumour suppressor genes, are targeted for inactivation. Understanding the molecular details of cell cycle regulation and checkpoint abnormalities in cancer offers insight into potential therapeutic strategies.


Assuntos
Proteína Quinase CDC2/genética , Genes cdc/fisiologia , Neoplasias/genética , Proteína Quinase CDC2/antagonistas & inibidores , Ciclina A/genética , Ciclina G , Ciclina G1 , Ciclinas/genética , Dano ao DNA/genética , Genes p53/genética , Humanos , Mitose/genética , Mutagênese/genética , Fosforilação
20.
J Biol Chem ; 276(18): 14939-45, 2001 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-11279061

RESUMO

The Fas/tumor necrosis factor (TNF)/TRAIL receptors signal death through a cytoplasmic death domain (DD) containing six alpha-helices with positively charged helix 2 interacting with negatively charged helix 3 of another DD. DD mutation occurs in head/neck and lung cancer (TRAIL receptor KILLER/DR5) and in lpr mice (Fas). We examined the apoptotic potential of known KILLER/DR5 lung tumor-derived mutants (n = 6) and DD mutants (n = 18) generated based on conservation with DR4, Fas, Fas-associated death domain (FADD), and tumor necrosis factor receptor 1 (TNFR1). With the exception of Arg-330 required in Fas or FADD for aggregation or for TNFR1 cytotoxicity, surprisingly major loss-of-function KILLER/DR5 alleles (W325A, L334A (lpr-like), I339A, and W360A) contained hydrophobic residues. Loss-of-function of I339A (highly conserved) has not been reported in DDs. Charged residue mutagenesis revealed the following points. 1) E326A, conserved in DR4, is dispensable for death; the homologous residue is positively charged in Fas, TNFR1, and FADD and is critical for DD interactions. 2) K331A, D336A, E338A, K340A, K343A, and D351A have partial loss-of-function suggesting multiple charges stabilize receptor-adapter interactions. Analysis of the tumor-derived KILLER/DR5 mutants revealed the following. 1) L334F has partial loss-of-function versus L334A, whereas E338K has major loss-of-function versus E338A, examples where alanine and tumor-specific substitutions have divergent phenotypes. 2) Unexpectedly, S324F, E326K, K386N, and D407Y have no loss-of-function with tumor-specific or alanine substitutions. Loss-of-function KILLER/DR5 mutants were deficient in recruitment of FADD and caspase 8 to TRAIL death-inducing signaling complexes. The results reveal determinants within KILLER/DR5 for death signaling and drug design.


Assuntos
Apoptose/fisiologia , Receptores do Fator de Necrose Tumoral/fisiologia , Transdução de Sinais/fisiologia , Sequência de Aminoácidos , Linhagem Celular , Humanos , Dados de Sequência Molecular , Mutagênese , Receptores do Ligante Indutor de Apoptose Relacionado a TNF , Receptores do Fator de Necrose Tumoral/química , Receptores do Fator de Necrose Tumoral/genética , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...