Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2402626, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38781603

RESUMO

In advanced batteries, interphases serve as the key component in stabilizing the electrolyte with reactive electrode materials far beyond thermodynamic equilibria. While an active interphase facilitates the transport of working ions, an inactive interphase obstructs ion flow, constituting the primary barrier to the realization of battery chemistries. Here, we present a successful transformation of a traditionally inactive passivating layer on Mg-metal anode, characteristic of Mg-metal batteries (MMBs) with typical carbonate electrolytes, into an active and robust interphase in the Li-metal scenario. By further strategically designing magnesiated Li+ electrolytes, we induce the in-situ development of this resilient interphase on Li-metal anodes, imparting enduring stability to Li-metal batteries (LMBs) with nickel-rich cathodes. We identify that the strong affinity between Mg2+ and anions in magnesiated Li+ electrolytes assembles ionic clusters with a bias for reducibility, thereby catalyzing the creation of anion-derived interphases rich in inorganic constituents. The prevalence of ionic clusters induced by magnesiation of electrolytes brought properties only available in high-concentration electrolytes, suggesting a fresh paradigm of tailing electrolytes for highly reversible LMBs. This article is protected by copyright. All rights reserved.

2.
ACS Appl Mater Interfaces ; 16(15): 18768-18781, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38588442

RESUMO

Electrocatalytic hydrogen evolution reactions (HER) are envisaged as the most promising sustainable approach for green hydrogen production. However, the considerably high cost often associated with such reactions, particularly upon scale-up, poses a daunting challenge. Herein, a facile, effective, and environmentally benign one-pot scalable approach is developed to fabricate MnM (M═Co, Cu, Ni, and Fe) nanocrystals supported over in situ formed carbon nanofibers (MnM/C) as efficient noble-metal-free electrocatalysts for HER. The formation of carbon nanofibers entails impregnating cellulose in an aqueous solution of metal precursors, followed by annealing the mixture at 550 °C. During the impregnation process, cellulose acts as a reactor for inducing the in situ reductions of MnM salts with the assistance of ether and hydroxyl groups to drive the mass production (several grams) of ultralong (5 ± 1 µM) carbon nanofibers ornamented with MnM nanoparticles (10-14 nm in size) at an average loading of 2.87 wt %. For better electrocatalytic HER benchmarking, the fabricated catalysts were tested over different working electrodes, i.e., carbon paper, carbon foam, and glassy carbon, in the presence of different electrolytes. All the fabricated MnM/C catalysts have demonstrated an appealing synergetic-effect-dependent HER activity, with MnCo/C exhibiting the best performance over carbon foam, close to that of the state-of-the-art commercial Pt/C (10 wt % Pt), with an overpotential of 11 mV at 10 mA cm-2, a hydrogen production rate of 2448 mol g-1 h-1, and a prolonged stability of 2 weeks. The HER performance attained by MnCo/C nanofibers is among the highest reported for Pt-free electrocatalysts, thanks to the mutual alloying effect, higher synergism, large surface area, and active interfacial interactions over the nanofibers. The presented findings underline the potential of our approach for the large-scale production of cost-effective electrocatalysts for practical HER.

3.
Adv Mater ; 36(3): e2305326, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37907810

RESUMO

Superconductivty has recently been induced in MXenes through surface modification. However, the previous reports have mostly been based on powders or cold-pressed pellets, with no known reports on the intrinsic superconsucting properties of MXenes at the nanoale. Here, it is developed a high-temperature atomic exchange process in NH3 atmosphere which induces superconductivity in either singleflakes or thin films of Nb2 CTx MXene. The exchange process between nitrogen atoms and fluorine, carbon, and oxygen atoms in the MXene lattice and related structural adjustments are studied using both experiments and density functional theory. Using either single-flake or thin-film devices, an anisotropic magnetic response of the 2D superconducting transformation has been successfully revealed. The anisotropic superconductivity is further demonstrated using superconducting thin films uniformly deposited over a 4 in. wafers, which opens up the possibility of scalable MXene-based superconducting devices.

4.
Small ; 19(36): e2208253, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37183297

RESUMO

MXenes, a fast-growing family of two-dimensional (2D) transition metal carbides/nitrides, are promising for electronics and energy storage applications. Mo2 CTx MXene, in particular, has demonstrated a higher capacity than other MXenes as an anode for Li-ion batteries. Yet, such enhanced capacity is accompanied by slow kinetics and poor cycling stability. Herein, it is revealed that the unstable cycling performance of Mo2 CTx is attributed to the partial oxidation into MoOx with structural degradation. A laser-induced Mo2 CTx /Mo2 C (LS-Mo2 CTx ) hybrid anode has been developed, of which the Mo2 C nanodots boost redox kinetics, and the laser-reduced oxygen content prevents the structural degradation caused by oxidation. Meanwhile, the strong connections between the laser-induced Mo2 C nanodots and Mo2 CTx nanosheets enhance conductivity and stabilize the structure during charge-discharge cycling. The as-prepared LS-Mo2 CTx anode exhibits an enhanced capacity of 340 mAh g-1 vs 83 mAh g-1 (for pristine) and an improved cycling stability (capacity retention of 106.2% vs 80.6% for pristine) over 1000 cycles. The laser-induced synthesis approach underlines the potential of MXene-based hybrid materials for high-performance energy storage applications.

5.
Nano Lett ; 22(19): 7936-7943, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36136410

RESUMO

Two-dimensional (2D) lead halide perovskites (LHPs) have garnered incredible attention thanks to their exciting optoelectronic properties and intrinsic strong quantum confinement effect. Herein, we carefully investigate and decipher the charge carrier dynamics at the interface between CsPbBr3 multiple quantum wells (MQWs) as the photoactive layer and TiO2 and Spiro-OMeTAD as electron and hole transporting materials, respectively. The fabricated MQWs comprise three monolayers of CsPbBr3 separated by 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) as barriers. By varying the BCP thickness, we show that charge carrier extraction from MQWs to the corresponding extracting layer occurs through a quantum tunneling effect, as elaborated by steady-state and time-resolved photoluminescence measurements and further verified by femtosecond transient absorption experiments. Ultimately, we have investigated the impact of the barrier-thickness-dependent quantum tunneling effect on the photoelectric behavior of the synthesized QW photodetector devices. Our findings shed light on one of the most promising approaches for efficient carrier extraction in quantum-confined systems.

6.
ACS Appl Mater Interfaces ; 14(40): 45254-45262, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36166239

RESUMO

Aluminum-ion batteries have garnered significant interest as a potentially safer and cheaper replacement for conventional lithium-ion batteries, offering a shorter charging time and denser storage capacity. Nonetheless, the progress in this field is considerably hampered by the limited availability of suitable cathode materials that can sustain the reversible intercalation of Al3+/[AlCl4]- ions, particularly after long cycles. Herein, we demonstrate that rechargeable Al batteries embedded with two-dimensional (2D) Nb2CTx MXene as a cathode material exhibit excellent capacity and exceptional long cyclic performance. We have successfully improved the initial electrochemical performance of Nb2CTx MXene after being properly delaminated to a single-layered microstructure and subjected to a post-synthesis calcining treatment. Compared to pristine Nb2CTx MXene, the Al battery embedded with the calcined Nb2CTx MXene cathode has, respectively, retained high capacities of 108 and 80 mAh g-1 after 500 cycles at current densities of 0.2 and 0.5 A g-1 in a wide voltage window (0.1-2.4 V). Noteworthily, the cyclic lifetime of Nb2CTx MXene was extended from ∼300 to >500 times after calcination. We reveal that attaining Nb2CTx nanosheets with a controllable d-spacing has promoted the migration of the [AlCl4]- and Al3+ ions in the MXene interlayers, leading to enhanced charge storage. Furthermore, we found out that the formation of niobium oxides and amorphous carbon after calcination probably benefits the electrochemical performance of Nb2CTx MXene electrode in Al batteries.

7.
ACS Nano ; 16(5): 7904-7914, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35491863

RESUMO

The ability of MXenes to efficiently absorb light is greatly enriched by the surface plasmons oscillating at their two-dimensional (2D) surfaces. Thus far, MXenes have shown impressive plasmonic absorptions spanning the visible and infrared (IR) regimes. However, their potential use in IR optoelectronic applications, including photodiodes, has been marginally investigated. Besides, their relatively low resistivity has limited their use as photosensing materials due to their intrinsic high dark current. Herein, heterostructures made of methylammonium lead triiodide (MAPbI3) perovskite and niobium carbide (Nb2CTx) MXene are prepared with a matching band structure and exploited for self-powered visible-near IR (NIR) photodiodes. Using MAPbI3 has expanded the operation range of the MAPbI3/Nb2CTx photodiode to the visible regime while suppressing the relatively large dark current of the NIR-absorbing Nb2CTx. In consequence, the fabricated MAPbI3/Nb2CTx photodiode has responded linearly to white light illumination with a responsivity of 0.25 A/W and a temporal photoresponse of <4.5 µs. Furthermore, when illuminated by NIR laser (1064 nm), our photodiode demonstrates a higher on/off ratio (∼103) and faster response times (<30 ms) compared to that of planar Nb2CTx-only detectors (<2 and 20 s, respectively). The performed space-charge-limited current (SCLC) and capacitance measurements reveal that such an efficient and enhanced charge transfer depends on the coordinate bonding between the surface groups of the MXene and the undercoordinated Pb2+ ions of the MAPbI3 at the passivated MAPbI3/Nb2CTx interface.

8.
ACS Nano ; 16(2): 2419-2428, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35139300

RESUMO

Two-dimensional transition metal carbides (MXenes) are of great interest as electrode materials for a variety of applications, including solar cells, due to their tunable optoelectronic properties, high metallic conductivity, and attractive solution processability. However, thus far, MXene electrodes have only been exploited for lab-scale device applications. Here, to demonstrate the potential of MXene electrodes at an industry-relevant level, we implemented a scalable spray coating technique to deposit highly conductive (ca. 8000 S/cm, at a ca. 55 nm thickness) Ti3C2Tx films (Tx: surface functional groups, i.e., -OH, -O, -F) via an automated spray system. We employed these Ti3C2Tx films as rear electrodes for silicon heterojunction solar cells as a proof of concept. The spray-deposited MXene flakes have formed a conformal coating on top of the indium tin oxide (ITO)-coated random pyramidal textured silicon wafers, leading to >20% power conversion efficiency (PCE) over both medium-sized (4.2 cm2) and large (243 cm2, i.e., industry-sized 6 in. pseudosquare wafers) cell areas. Notably, the Ti3C2Tx-rear-contacted devices have retained around 99% of their initial PCE for more than 600 days of ambient air storage. Their performance is comparable with state-of-the-art solar cells contacted with sputtered silver electrodes. Our findings demonstrate the high-throughput potential of spray-coated MXene-based electrodes for solar cells in addition to a wider variety of electronic device applications.

9.
ACS Appl Mater Interfaces ; 14(4): 5265-5274, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35060695

RESUMO

Clean water supply in off-grid locations remains a stumbling stone for socio-economic development in remote areas where solar energy is abundant. In this regard, several technologies have already introduced various solutions to the off-grid freshwater predicament; however, most of them are either costly or complex to operate. Nonetheless, photothermal membrane distillation (PMD) has emerged as a promising candidate with great potential to be autonomously driven by solar energy. Instead of using energy-intensive bulk feed heating in conventional MD systems, PMD membranes can directly harvest the incident solar light at the membrane interface as an alternative driving energy resource for the desalination process. Because of its excellent photothermal properties and stability in ionic environments, herein, Ti3C2Tx MXene was coated onto commercial polytetrafluoroethylene (PTFE) membranes to allow for a self-heated PMD process. An average water vapor flux of 0.77 kg/m2 h with an excellent temporal response under intermitting lighting and a photothermal efficiency of 65.3% were achieved by the PMD membrane under one-sun irradiation for a feed salinity of 0.36 g/L. Naturally, the efficiency of the process decreased with higher feed concentrations due to the reduction of the evaporation rate and the scattering of incident sunlight toward the membrane photothermal surface, especially at rates above 10 g/L. Notably, with such performance, 1 m2 of the MXene-coated PMD membrane can fulfill the recommended daily potable water intake for a household, that is, ca. 6 L/day.

10.
ACS Nano ; 16(1): 792-800, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35000386

RESUMO

Extracting osmotic energy through nanoporous membranes is an efficient way to harvest renewable and sustainable energy using the salinity gradient between seawater and river water. Despite recent advances of nanopore-based membranes, which have revitalized the prospect of blue energy, their energy conversion is hampered by nanomembrane issues such as high internal resistance or low selectivity. Herein, we report a lamellar-structured membrane made of nanoporous Ti3C2Tx MXene sheets, exhibiting simultaneous enhancement in permeability and ion selectivity beyond their inherent trade-off. The perforated nanopores formed by facile H2SO4 oxidation of the sheets act as a network of cation channels that interconnects interplanar nanocapillaries throughout the lamellar membrane. The constructed internal nanopores lower the energy barrier for cation passage, thereby boosting the preferential ion diffusion across the membrane. A maximum output power density of the nanoporous Ti3C2Tx MXene membranes reaches up to 17.5 W·m-2 under a 100-fold KCl gradient at neutral pH and room temperature, which is as high as by 38% compared to that of the pristine membrane. The membrane design strategy employing the nanoporous two-dimensional sheets provides a promising approach for ion exchange, osmotic energy extraction, and other nanofluidic applications.

11.
Adv Mater ; 33(17): e2005166, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33759267

RESUMO

Semiconductor heterostructures of multiple quantum wells (MQWs) have major applications in optoelectronics. However, for halide perovskites-the leading class of emerging semiconductors-building a variety of bandgap alignments (i.e., band-types) in MQWs is not yet realized owing to the limitations of the current set of used barrier materials. Here, artificial perovskite-based MQWs using 2,2',2″-(1,3,5-benzinetriyl)-tris(1-phenyl-1-H-benzimidazole), tris-(8-hydroxyquinoline)aluminum, and 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline as quantum barrier materials are introduced. The structures of three different five-stacked perovskite-based MQWs each exhibiting a different band offset with CsPbBr3 in the conduction and valence bands, resulting in a variety of MQW band alignments, i.e., type-I or type-II structures, are shown. Transient absorption spectroscopy reveals the disparity in charge carrier dynamics between type-I and type-II MQWs. Photodiodes of each type of perovskite artificial MQWs show entirely different carrier behaviors and photoresponse characteristics. Compared with bulk perovskite devices, type-II MQW photodiodes demonstrate a more than tenfold increase in the rectification ratio. The findings open new opportunities for producing halide-perovskite-based quantum devices by bandgap engineering using simple quantum barrier considerations.

12.
ACS Nano ; 15(2): 2698-2706, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33470788

RESUMO

MXene-based hydrogels, a flourishing family of soft materials, have recently emerged as promising candidates for stretchable electronics. Despite recent progress, most works use MXenes as conductive nanofillers. Herein, by tuning the molecular interactions between MXene nanosheets and other constituents within the hydrogels, we demonstrate Ti3C3Tx MXene can act as a versatile cross-linker to activate the fast gelation of a wide range of hydrogels, starting from various monomer- and polymer-based precursors. The gelation behavior varies significantly across hydrogels. In general, the fast gelation mechanism is attributed to the easier generation of free radicals with the help of Ti3C2Tx MXene and the presence of multiscale molecular interactions between MXene and polymers. The use of MXene as a dynamic cross-linker leads to superior mechanical properties, adhesion, and self-healing ability. Owing to the inherent photothermal behavior of Ti3C3Tx and the heterogeneous phase-transforming features of polymers, a polymer-MXene hydrogel is demonstrated to exhibit distinctive thermosensation-based actuation upon near-infrared illumination, accompanied by rapid shape transformation.

13.
Chem Soc Rev ; 49(20): 7229-7251, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-32936169

RESUMO

Hydrogels have recently garnered tremendous interest due to their potential application in soft electronics, human-machine interfaces, sensors, actuators, and flexible energy storage. Benefiting from their impressive combination of hydrophilicity, metallic conductivity, high aspect ratio morphology, and widely tuneable properties, when two-dimensional (2D) transition metal carbides/nitrides (MXenes) are incorporated into hydrogel systems, they offer exciting and versatile platforms for the design of MXene-based soft materials with tunable application-specific properties. The intriguing and, in some cases, unique properties of MXene hydrogels are governed by complex gel structures and gelation mechanisms, which require in-depth investigation and engineering at the nanoscale. On the other hand, the formulation of MXenes into hydrogels can significantly increase the stability of MXenes, which is often the limiting factor for many MXene-based applications. Moreover, through simple treatments, derivatives of MXene hydrogels, such as aerogels, can be obtained, further expanding their versatility. This tutorial review intends to show the enormous potential of MXene hydrogels in expanding the application range of both hydrogels and MXenes, as well as increasing the performance of MXene-based devices. We elucidate the existing structures of various MXene-containing hydrogel systems along with their gelation mechanisms and the interconnecting driving forces. We then discuss their distinctive properties stemming from the integration of MXenes into hydrogels, which have revealed an enhanced performance, compared to either MXenes or hydrogels alone, in many applications (energy storage/harvesting, biomedicine, catalysis, electromagnetic interference shielding, and sensing).

14.
Adv Mater ; 32(21): e1908486, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32239560

RESUMO

As a thriving member of the 2D nanomaterials family, MXenes, i.e., transition metal carbides, nitrides, and carbonitrides, exhibit outstanding electrochemical, electronic, optical, and mechanical properties. They have been exploited in many applications including energy storage, electronics, optoelectronics, biomedicine, sensors, and catalysis. Compared to other 2D materials, MXenes possess a unique set of properties such as high metallic conductivity, excellent dispersion quality, negative surface charge, and hydrophilicity, making them particularly suitable as inks for printing applications. Printing and pre/post-patterned coating methods represent a whole range of simple, economically efficient, versatile, and eco-friendly manufacturing techniques for devices based on MXenes. Moreover, printing can allow for complex 3D architectures and multifunctionality that are highly required in various applications. By means of printing and patterned coating, the performance and application range of MXenes can be dramatically increased through careful patterning in three dimensions; thus, printing/coating is not only a device fabrication tool but also an enabling tool for new applications as well as for industrialization.

15.
Adv Mater ; 32(19): e1908392, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32201985

RESUMO

Developing stable plasmonic materials featuring earth-abundant compositions with continuous band structures, similar to those of typical metals, has received special research interest. Owing to their metal-like behavior, monoclinic MoO2 nanostructures have been found to support stable and intense surface plasmon (SP) resonances. However, no progress has been made on their energy and spatial distributions over individual nanostructures, nor the origin of their possibly existing specific SP modes. Here, various MoO2 nanostructures are designed via polydopamine chemistry and managed to visualize multiple longitudinal and transversal SP modes supported by the monoclinic MoO2 , along with intrinsic interband transitions, using scanning transmission electron microscopy coupled with ultrahigh-resolution electron energy loss spectroscopy. The identified geometry-dependent SP energies are tuned by either controlling the shape and thickness of MoO2 nanostructures through their well-designed chemical synthesis, or by altering their length using a developed electron-beam patterning technique. Theoretical calculations reveal that the strong plasmonic behavior of the monoclinic MoO2 is associated with the abundant delocalized electrons in the Mo d orbitals. This work not only provides a significant improvement in imaging and tailoring SPs of nonconventional metallic nanostructures, but also highlights the potential of MoO2 nanostructures for micro-nano optical and optoelectronic applications.

16.
Adv Mater ; 31(32): e1807658, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31222823

RESUMO

MXenes have recently shown impressive optical and plasmonic properties associated with their ultrathin-atomic-layer structure. However, their potential use in photonic and plasmonic devices has been only marginally explored. Photodetectors made of five different MXenes are fabricated, among which molybdenum carbide MXene (Mo2 CTx ) exhibits the best performance. Mo2 CTx MXene thin films deposited on paper substrates exhibit broad photoresponse in the range of 400-800 nm with high responsivity (up to 9 A W-1 ), detectivity (≈5 × 1011 Jones), and reliable photoswitching characteristics at a wavelength of 660 nm. Spatially resolved electron energy-loss spectroscopy and ultrafast femtosecond transient absorption spectroscopy of the MXene nanosheets reveal that the photoresponse of Mo2 CTx is strongly dependent on its surface plasmon-assisted hot carriers. Additionally, Mo2 CTx thin-film devices are shown to be relatively stable under ambient conditions, continuous illumination and mechanical stresses, illustrating their durable photodetection operation in the visible spectral range. Micro-Raman spectroscopy conducted on bare Mo2 CTx film and on gold electrodes allowing for surface-enhanced Raman scattering demonstrates surface chemistry and a specific low-frequency band that is related to the vibrational modes of the single nanosheets. The specific ability to detect and excite individual surface plasmon modes provides a viable platform for various MXene-based optoelectronic applications.

17.
ACS Nano ; 12(8): 8485-8493, 2018 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-30020767

RESUMO

2D Ti3C2 T x MXenes were recently shown to exhibit intense surface plasmon (SP) excitations; however, their spatial variation over individual Ti3C2 T x flakes remains undiscovered. Here, we use scanning transmission electron microscopy (STEM) combined with ultra-high-resolution electron energy loss spectroscopy (EELS) to investigate the spatial and energy distribution of SPs (both optically active and forbidden modes) in mono- and multilayered Ti3C2 T x flakes. With STEM-EELS mapping, the inherent interband transition in addition to a variety of transversal and longitudinal SP modes (ranging from visible down to 0.1 eV in MIR) are directly visualized and correlated with the shape, size, and thickness of Ti3C2 T x flakes. The independent polarizability of Ti3C2 T x monolayers is unambiguously demonstrated and attributed to their unusual weak interlayer coupling. This characteristic allows for engineering a class of nanoscale systems, where each monolayer in the multilayered structure of Ti3C2 T x has its own set of SPs with distinctive multipolar characters. Moreover, the tunability of the SP energies is highlighted by conducting in situ heating STEM to monitor the change of the surface functionalization of Ti3C2 T x through annealing at temperatures up to 900 °C. At temperatures above 500 °C, the observed fluorine (F) desorption multiplies the metal-like free electron density of Ti3C2 T x flakes, resulting in a monotonic blue-shift in the SP energy of all modes. These results underline the great potential for the development of Ti3C2 T x-based applications, spanning the visible-MIR spectrum, relying on the excitation and detection of single SPs.

18.
ACS Appl Mater Interfaces ; 7(25): 13794-800, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26024366

RESUMO

Although silicon nanoparticles dispersed in liquids are used in various applications ranging from biolabeling to hydrogen production, their reactivities with their solvents and their catalytic properties remain still unexplored. Here, we discovered that, because of their surface structures and mechanical strain, silicon nanoparticles react strongly with their solvents and may act as catalysts for the dehydrogenation, at room temperature, of secondary alcohols (e.g., isopropanol) into ketones and hydrogen. This catalytic reaction was monitored by gas chromatography, pH measurements, mass spectroscopy, and solid-state NMR. This discovery provides new understanding of the role played by silicon nanoparticles, and nanosilicon in general, in their reactivity in solvents in general, as well as being candidates in catalysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...