Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(3): e0300650, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38527025

RESUMO

As the demand for high-bandwidth Internet connections continues to surge, industries are exploring innovative ways to harness this connectivity, and smart agriculture stands at the forefront of this evolution. In this paper, we delve into the challenges faced by Internet Service Providers (ISPs) in efficiently managing bandwidth and traffic within their networks. We propose a synergy between two pivotal technologies, Multi-Protocol Label Switching-Traffic Engineering (MPLS-TE) and Diffserv Quality of Service (Diffserv-QoS), which have implications beyond traditional networks and resonate strongly with the realm of smart agriculture. The increasing adoption of technology in agriculture relies heavily on real-time data, remote monitoring, and automated processes. This dynamic nature requires robust and reliable high-bandwidth connections to facilitate data flow between sensors, devices, and central management systems. By optimizing bandwidth utilization through MPLS-TE and implementing traffic control mechanisms with Diffserv-QoS, ISPs can create a resilient network foundation for smart agriculture applications. The integration of MPLS-TE and Diffserv-QoS has resulted in significant enhancements in throughput and a considerable reduction in Jitter. Employment of the IPv4 header has demonstrated impressive outcomes, achieving a throughput of 5.83 Mbps and reducing Jitter to 3 msec.


Assuntos
Algoritmos , Redes de Comunicação de Computadores , Simulação por Computador , Tecnologia sem Fio , Agricultura
2.
PLoS One ; 19(2): e0294235, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38354194

RESUMO

This paper introduces a method aiming at enhancing the efficacy of speaker identification systems within challenging acoustic environments characterized by noise and reverberation. The methodology encompasses the utilization of diverse feature extraction techniques, including Mel-Frequency Cepstral Coefficients (MFCCs) and discrete transforms, such as Discrete Cosine Transform (DCT), Discrete Sine Transform (DST), and Discrete Wavelet Transform (DWT). Additionally, an Artificial Neural Network (ANN) serves as the classifier for this method. Reverberation is modeled using varying-length comb filters, and its impact on pitch frequency estimation is explored via the Auto Correlation Function (ACF). This paper also contributes to the field of cancelable speaker identification in both open and reverberation environments. The proposed method depends on comb filtering at the feature level, deliberately distorting MFCCs. This distortion, incorporated within a cancelable framework, serves to obscure speaker identities, rendering the system resilient to potential intruders. Three systems are presented in this work; a reverberation-affected speaker identification system, a system depending on cancelable features through comb filtering, and a novel cancelable speaker identification system within reverbration environments. The findings revealed that, in both scenarios with and without reverberation effects, the DWT-based features exhibited superior performance within the speaker identification system. Conversely, within the cancelable speaker identification system, the DCT-based features represent the top-performing choice.


Assuntos
Redes Neurais de Computação , Ruído , Acústica , Análise de Ondaletas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...