Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Kidney Int ; 98(5): 1225-1241, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32610050

RESUMO

Polycystin-1 (PC1) and -2 (PC2), products of the PKD1 and PKD2 genes, are mutated in autosomal dominant polycystic kidney disease (ADPKD). They localize to the primary cilia; however, their ciliary function is in dispute. Loss of either the primary cilia or PC1 or PC2 causes cyst formation. However, loss of both cilia and PC1 or PC2 inhibits cyst growth via an unknown pathway. To help define a pathway, we studied cilium length in human and mouse kidneys. We found cilia are elongated in kidneys from patients with ADPKD and from both Pkd1 and Pkd2 knockout mice. Cilia elongate following polycystin inactivation. The role of intraflagellar transport proteins in Pkd1-deficient mice is also unknown. We found that inactivation of Ift88 (a gene expressing a core component of intraflagellar transport) in Pkd1 knockout mice, as well as in a new Pkd2 knockout mouse, shortened the elongated cilia, impeded kidney and liver cystogenesis, and reduced cell proliferation. Multi-stage in vivo analysis of signaling pathways revealed ß-catenin activation as a prominent, early, and sustained event in disease onset and progression in Pkd2 single knockout but not in Pkd2.Ift88 double knockout mouse kidneys. Additionally, AMPK, mTOR and ERK pathways were altered in Pkd2 single knockout mice but only AMPK and mTOR pathway alteration were rescued in Pkd2.Ift88 double knockout mice. Thus, our findings advocate an essential role of polycystins in the structure and function of the primary cilia and implicate ß-catenin as a key inducer of cystogenesis downstream of the primary cilia. Our data suggest that modulating cilium length and/or its associated signaling events may offer novel therapeutic approaches for ADPKD.


Assuntos
Cistos , Doenças Renais Policísticas , Rim Policístico Autossômico Dominante , Animais , Cílios , Cistos/genética , Humanos , Rim , Fígado , Camundongos , Camundongos Knockout , Rim Policístico Autossômico Dominante/genética , Canais de Cátion TRPP/genética
2.
J Cell Sci ; 129(19): 3675-3684, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27505895

RESUMO

Mutation of PKD1, encoding the protein polycystin-1 (PC1), is the main cause of autosomal dominant polycystic kidney disease (ADPKD). The signaling pathways downstream of PC1 in ADPKD are still not fully understood. Here, we provide genetic evidence for the necessity of Gα12 (encoded by Gna12, hereafter Gα12) for renal cystogenesis induced by Pkd1 knockout. There was no phenotype in mice with deletion of Gα12 (Gα12-/-). Polyinosine-polycytosine (pI:pC)-induced deletion of Pkd1 (Mx1Cre+Pkd1f/fGα12+/+) in 1-week-old mice resulted in multiple kidney cysts by 9 weeks, but the mice with double knockout of Pkd1 and Gα12 (Mx1Cre+Pkd1f/fGα12-/-) had no structural and functional abnormalities in the kidneys. These mice could survive more than one year without kidney abnormalities except multiple hepatic cysts in some mice, which indicates that the effect of Gα12 on cystogenesis is kidney specific. Furthermore, Pkd1 knockout promoted Gα12 activation, which subsequently decreased cell-matrix and cell-cell adhesion by affecting the function of focal adhesion and E-cadherin, respectively. Our results demonstrate that Gα12 is required for the development of kidney cysts induced by Pkd1 mutation in mouse ADPKD.


Assuntos
Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Rim/metabolismo , Rim/patologia , Rim Policístico Autossômico Dominante/metabolismo , Rim Policístico Autossômico Dominante/patologia , Canais de Cátion TRPP/metabolismo , Animais , Caderinas/metabolismo , Junções Célula-Matriz , Células Epiteliais/metabolismo , Deleção de Genes , Técnicas de Inativação de Genes , Fígado/metabolismo , Fígado/patologia , Camundongos , Modelos Biológicos , Fibras de Estresse/metabolismo
3.
J Cell Sci ; 128(22): 4063-73, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26430213

RESUMO

Failure to localize membrane proteins to the primary cilium causes a group of diseases collectively named ciliopathies. Polycystin-1 (PC1, also known as PKD1) is a large ciliary membrane protein defective in autosomal dominant polycystic kidney disease (ADPKD). Here, we developed a large set of PC1 expression constructs and identified multiple sequences, including a coiled-coil motif in the C-terminal tail of PC1, regulating full-length PC1 trafficking to the primary cilium. Ciliary trafficking of wild-type and mutant PC1 depends on the dose of polycystin-2 (PC2, also known as PKD2), and the formation of a PC1-PC2 complex. Modulation of the ciliary trafficking module mediated by the VxP ciliary-targeting sequence and Arf4 and Asap1 does not affect the ciliary localization of full-length PC1. PC1 also promotes PC2 ciliary trafficking. PC2 mutations truncating its C-terminal tail but not those changing the VxP sequence to AxA or impairing the pore of the channel, leading to a dead channel, affect PC1 ciliary trafficking. Cleavage at the GPCR proteolytic site (GPS) of PC1 is not required for PC1 trafficking to cilia. We propose a mutually dependent model for the ciliary trafficking of PC1 and PC2, and that PC1 ciliary trafficking is regulated by multiple cis-acting elements. As all pathogenic PC1 mutations tested here are defective in ciliary trafficking, ciliary trafficking might serve as a functional read-out for ADPKD.


Assuntos
Cílios/metabolismo , Túbulos Renais Coletores/metabolismo , Canais de Cátion TRPP/metabolismo , Animais , Células HEK293 , Humanos , Túbulos Renais Coletores/citologia , Camundongos , Canais de Cátion TRPP/genética
4.
Infect Immun ; 83(1): 28-38, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25312954

RESUMO

Shiga toxins (Stx) are a family of cytotoxic proteins that can cause hemolytic-uremic syndrome (HUS), a thrombotic microangiopathy, following infections by Shiga toxin-producing Escherichia coli (STEC). Renal failure is a key feature of HUS and a major cause of childhood renal failure worldwide. There are currently no specific therapies for STEC-associated HUS, and the mechanism of Stx-induced renal injury is not well understood primarily due to a lack of fully representative animal models and an inability to monitor disease progression on a molecular or cellular level in humans at early stages. Three-dimensional (3D) tissue models have been shown to be more in vivo-like in their phenotype and physiology than 2D cultures for numerous disease models, including cancer and polycystic kidney disease. It is unknown whether exposure of a 3D renal tissue model to Stx will yield a more in vivo-like response than 2D cell culture. In this study, we characterized Stx2-mediated cytotoxicity in a bioengineered 3D human renal tissue model previously shown to be a predictor of drug-induced nephrotoxicity and compared its response to Stx2 exposure in 2D cell culture. Our results demonstrate that although many mechanistic aspects of cytotoxicity were similar between 3D and 2D, treatment of the 3D tissues with Stx resulted in an elevated secretion of the kidney injury marker 1 (Kim-1) and the cytokine interleukin-8 compared to the 2D cell cultures. This study represents the first application of 3D tissues for the study of Stx-mediated kidney injury.


Assuntos
Rim/efeitos dos fármacos , Organoides/efeitos dos fármacos , Toxina Shiga II/toxicidade , Receptor Celular 1 do Vírus da Hepatite A , Humanos , Glicoproteínas de Membrana/análise , Modelos Biológicos , Técnicas de Cultura de Órgãos , Receptores Virais/análise
5.
Cancer Res ; 73(17): 5371-80, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23824745

RESUMO

The von Hippel-Lindau (VHL) tumor suppressor pVHL is lost in the majority of clear-cell renal cell carcinomas (RCC). Activation of the PI3K/AKT/mTOR pathway is also common in RCC, with PTEN loss occurring in approximately 30% of the cases, but other mechanisms responsible for activating AKT at a wider level in this setting are undefined. Plant homeodomain protein Jade-1 (PHF17) is a candidate renal tumor suppressor stabilized by pVHL. Here, using kinase arrays, we identified phospho-AKT1 as an important target of Jade-1. Overexpressing or silencing Jade-1 in RCC cells increased or decreased levels of endogenous phospho-AKT/AKT1. Furthermore, reintroducing pVHL into RCC cells increased endogenous Jade-1 and suppressed endogenous levels of phospho-AKT, which colocalized with and bound to Jade-1. The N-terminus of Jade-1 bound both the catalytic domain and the C-terminal regulatory tail of AKT, suggesting a mechanism through which Jade-1 inhibited AKT kinase activity. Intriguingly, RCC precursor cells where Jade-1 was silenced exhibited an increased capacity for AKT-dependent anchorage-independent growth, in support of a tumor suppressor function for Jade-1 in RCC. In support of this concept, an in silico expression analysis suggested that reduced Jade-1 expression is a poor prognostic factor in clear-cell RCC that is associated with activation of an AKT1 target gene signature. Taken together, our results identify 2 mechanisms for Jade-1 fine control of AKT/AKT1 in RCC, through loss of pVHL, which decreases Jade-1 protein, or through attenuation in Jade-1 expression. These findings help explain the pathologic cooperativity in clear-cell RCC between PTEN inactivation and pVHL loss, which leads to decreased Jade-1 levels that superactivate AKT. In addition, they prompt further investigation of Jade-1 as a candidate biomarker and tumor suppressor in clear-cell RCC.


Assuntos
Carcinoma de Células Renais/patologia , Proteínas de Homeodomínio/metabolismo , Neoplasias Renais/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Western Blotting , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Proliferação de Células , Células Cultivadas , Perfilação da Expressão Gênica , Proteínas de Homeodomínio/antagonistas & inibidores , Proteínas de Homeodomínio/genética , Humanos , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Análise Serial de Proteínas , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , RNA Interferente Pequeno/genética , Serina-Treonina Quinases TOR/metabolismo , Proteínas Supressoras de Tumor/antagonistas & inibidores , Proteínas Supressoras de Tumor/genética
6.
Methods Enzymol ; 525: 1-20, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23522462

RESUMO

Primary cilia are sensory organelles that transmit extracellular signals into intracellular biochemical responses. Structural and functional defects in primary cilia are associated with a group of human diseases, known as ciliopathies, with phenotypes ranging from cystic kidney and obesity to blindness and mental retardation. Primary cilia mediate mechano- and chemosensation in many cell types. The mechanosensory function of the primary cilia requires the atypical G-protein-coupled receptor polycystin-1 and the calcium-permeable nonselective cation channel polycystin-2. Mechanical stimulations such as fluid-shear stress of the primary cilia initiate intracellular calcium rise, nitric oxide release, and protein modifications. In this review, we describe a set of protocols for cell culture to promote ciliation, mechanical stimulations of the primary cilia, and measurements of calcium rise and nitric oxide release induced by fluid shear stress.


Assuntos
Cílios/metabolismo , Mecanotransdução Celular/fisiologia , Animais , Cálcio/metabolismo , Cílios/fisiologia , Humanos , Estresse Mecânico , Canais de Cátion TRPP/metabolismo
7.
Dev Biol ; 324(1): 99-107, 2008 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-18823969

RESUMO

A transient increase in intracellular Ca(2+) is the universal signal for egg activation at fertilization. Eggs acquire the ability to mount the specialized fertilization-specific Ca(2+) signal during oocyte maturation. The first Ca(2+) transient following sperm entry in vertebrate eggs has a slow rising phase followed by a sustained plateau. The molecular determinants of the sustained plateau are poorly understood. We have recently shown that a critical determinant of Ca(2+) signaling differentiation during oocyte maturation is internalization of the plasma membrane calcium ATPase (PMCA). PMCA internalization is representative of endocytosis of several integral membrane proteins during oocyte maturation, a requisite process for early embryogenesis. Here we investigate the mechanisms regulating PMCA internalization. To track PMCA trafficking in live cells we cloned a full-length cDNA of Xenopus PMCA1, and show that GFP-tagged PMCA traffics in a similar fashion to endogenous PMCA. Functional data show that MPF activation during oocyte maturation is required for full PMCA internalization. Pharmacological and co-localization studies argue that PMCA is internalized through a lipid raft endocytic pathway. Deletion analysis reveal a requirement for the N-terminal cytoplasmic domain for efficient internalization. Together these studies define the mechanistic requirements for PMCA internalization during oocyte maturation.


Assuntos
Sinalização do Cálcio/fisiologia , Oócitos/fisiologia , ATPases Transportadoras de Cálcio da Membrana Plasmática/fisiologia , Xenopus laevis/fisiologia , Sequência de Aminoácidos , Animais , Membrana Celular/metabolismo , Endocitose , Feminino , Dados de Sequência Molecular , Oogênese , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriologia
8.
Development ; 134(18): 3307-15, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17699605

RESUMO

Vertebrate oocytes are maintained in meiotic arrest for prolonged periods of time before undergoing oocyte maturation in preparation for fertilization. Cyclic AMP (cAMP) signaling plays a crucial role in maintaining meiotic arrest, which is released by a species-specific hormonal signal. Evidence in both frog and mouse argues that meiotic arrest is maintained by a constitutively active G-protein coupled receptor (GPCR) leading to high cAMP levels. Because activated GPCRs are typically targeted for endocytosis as part of the signal desensitization pathway, we were interested in determining the role of trafficking at the cell membrane in maintaining meiotic arrest. Here we show that blocking exocytosis, using a dominant-negative SNAP25 mutant in Xenopus oocytes, releases meiotic arrest independently of progesterone. Oocyte maturation in response to the exocytic block induces the MAPK and Cdc25C signaling cascades, leading to MPF activation, germinal vesicle breakdown and arrest at metaphase of meiosis II with a normal bipolar spindle. It thus replicates all tested aspects of physiological maturation. Furthermore, inhibiting clathrin-mediated endocytosis hinders the effectiveness of progesterone in releasing meiotic arrest. These data show that vesicular traffic at the cell membrane is crucial in maintaining meiotic arrest in vertebrates, and support the argument for active recycling of a constitutively active GPCR at the cell membrane.


Assuntos
Exocitose , Meiose , Oócitos/fisiologia , Oogênese , Animais , Toxinas Botulínicas Tipo A/farmacologia , Exocitose/genética , Feminino , Fator Promotor de Maturação , Meiose/genética , Mesotelina , Quinases de Proteína Quinase Ativadas por Mitógeno , Proteínas do Tecido Nervoso , Oócitos/citologia , Oócitos/efeitos dos fármacos , Oogênese/efeitos dos fármacos , Oogênese/genética , Progesterona , Receptores Acoplados a Proteínas G , Deleção de Sequência , Proteína 25 Associada a Sinaptossoma , Xenopus , Fosfatases cdc25
9.
Dev Biol ; 288(2): 514-25, 2005 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-16330019

RESUMO

Ca(2+) is the universal signal for egg activation at fertilization in all sexually reproducing species. The Ca(2+) signal at fertilization is necessary for egg activation and exhibits specialized spatial and temporal dynamics. Eggs acquire the ability to produce the fertilization-specific Ca(2+) signal during oocyte maturation. However, the mechanisms regulating Ca(2+) signaling differentiation during oocyte maturation remain largely unknown. At fertilization, Xenopus eggs produce a cytoplasmic Ca(2+) (Ca(2+)(cyt)) rise that lasts for several minutes, and is required for egg activation. Here, we show that during oocyte maturation Ca(2+) transport effectors are tightly modulated. The plasma membrane Ca(2+) ATPase (PMCA) is completely internalized during maturation, and is therefore unable to extrude Ca(2+) out of the cell. Furthermore, IP(3)-dependent Ca(2+) release is required for the sustained Ca(2+)(cyt) rise in eggs, showing that Ca(2+) that is pumped into the ER leaks back out through IP(3) receptors. This apparent futile cycle allows eggs to maintain elevated cytoplasmic Ca(2+) despite the limited available Ca(2+) in intracellular stores. Therefore, Ca(2+) signaling differentiates in a highly orchestrated fashion during Xenopus oocyte maturation endowing the egg with the capacity to produce a sustained Ca(2+)(cyt) transient at fertilization, which defines the egg's competence to activate and initiate embryonic development.


Assuntos
Sinalização do Cálcio , Retículo Endoplasmático/fisiologia , Oócitos/fisiologia , Xenopus/fisiologia , Animais , Canais de Cálcio/metabolismo , ATPases Transportadoras de Cálcio/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Endocitose , Feminino , Fertilização , Técnicas In Vitro , Inositol 1,4,5-Trifosfato/metabolismo , Receptores de Inositol 1,4,5-Trifosfato , Transporte de Íons , ATPases Transportadoras de Cálcio da Membrana Plasmática , Receptores Citoplasmáticos e Nucleares/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...