Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Dairy Sci ; 105(10): 8439-8453, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36055831

RESUMO

Hyperinsulinemia concurrent with hypoglycemia is one of a myriad of physiological changes typically experienced by lactating dairy cows exposed to heat stress, the consequences of which are not yet well defined or understood. Therefore, the objective of this experiment was to separate the production-related effects of hyperinsulinemia with hypoglycemia from those of a hyperthermic environment. Multiparous lactating Holstein cows (n = 23; 58 ± 4 d in milk, 3.1 ± 0.3 lactations) were housed in temperature-controlled rooms and all were subjected to 4 experimental periods as follows: (1) thermoneutral (TN; temperature-humidity index of 65.1 ± 0.2; d 1-5), (2) TN + hyperinsulinemic-hypoglycemic clamp (HHC; insulin infused at 0.3 µg/kg of BW per h, glucose infused to maintain 90 ± 10% of baseline blood glucose for 96 h; d 6-10), (3) heat stress (HS; temperature-humidity index of 72.5 ± 0.2; d 16-20), and (4) HS + euglycemic clamp (EC; glucose infused to reach 100 ± 10% of TN baseline blood glucose for 96 h; d 21-25). Cows were fed and milked twice daily. Feed refusals were collected once daily for calculation of daily dry matter intake, and milk samples were collected at the beginning and end of each period for component analyses. Circulating insulin concentrations were measured in daily blood samples, whereas glucose concentrations were measured more frequently and variably in association with clamp procedures. Rectal temperatures and respiration rates were greater during HS than TN, as expected, and states of hyperinsulinemia and hypoglycemia were successfully induced by the HHC and high ambient temperatures (HS and EC). Feed intake differed based upon thermal environment as it was similar during TN and HHC periods, and declined for HS and EC. Milk production was not entirely reflective of feed intake as it was greatest during TN, intermediate during HHC, and lowest during HS and EC. All milk components differed with the experimental period, primarily in response to the thermal environment. Interestingly, TN baseline glucose concentrations were highly correlated with the change in glucose from TN to HS, and were related to glycemic status during HS. Furthermore, although few in number, those cows that failed to become hypoglycemic during HS tended to have a greater reduction in milk yield. The work presented here addresses a critical knowledge gap by broadening our understanding of the physiological response to heat stress and the related changes in glycemic state. This broadened understanding is fundamental for the development of novel, innovative management strategies as the dairy industry is compelled to become increasingly efficient in spite of global warming.


Assuntos
Doenças dos Bovinos , Transtornos de Estresse por Calor , Hiperinsulinismo , Hipoglicemia , Insulinas , Animais , Glicemia , Bovinos , Dieta/veterinária , Feminino , Transtornos de Estresse por Calor/veterinária , Resposta ao Choque Térmico , Temperatura Alta , Hiperinsulinismo/veterinária , Hipoglicemia/veterinária , Hipoglicemiantes/farmacologia , Lactação/fisiologia , Leite
2.
Meat Sci ; 194: 108958, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36081183

RESUMO

Fresh pork color is a function of pigment, and the pH and temperature conditions in the carcass postmortem. To explore the role of scald on color development, carcasses (n = 16) were subjected to either a 4- or 8-min scald. Semimembranosus (SM) muscle samples were collected before and after scalding, and at 24 h postmortem. A 50% reduction in scald time resulted in lighter color (L*) across the muscle early postmortem (P < 0.001), yet the 8-min scald treatment was lighter (P = 0.001) at 24 h. An interaction between scald time and sampling time showed in an increase in L* values at 4-min immediately following scald (P < 0.001). Two-hundred carcasses were then subjected to a modified scald time (6.5 min, or 7.5 min) in an industrial setting. Lowering scald time failed to recapitulate results. In fact, darker meat (L* value; P = 0.0166) was noted in the SM across longer scalds. These data suggest modest changes in scald time may not be responsible for changes in pork quality development.


Assuntos
Carne de Porco , Carne Vermelha , Animais , Suínos , Temperatura , Fatores de Tempo , Músculo Esquelético/fisiologia , Carne , Concentração de Íons de Hidrogênio
3.
Meat Sci ; 185: 108721, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34923395

RESUMO

Variations in color, though a quality frustration, are common across the face of fresh and processed hams. Herein, we measured objective color across the semimembranosus (SM) muscle early postmortem and at 1440 min, then compared these differences against biochemical and metabolic characteristics responsible for pork quality development. Color (L*, a*) differed (P < 0.001) by zone and time but no interaction was evident. Lactate content and pH were highly correlated (R2 = 0.92) at 30 min, but weakened (R2 = 0.161412) by 1440 min. Lactate anaplerosis was not responsible for this lack of relationship. Glycolytic potential also differed across zone (P < 0.001) and time (P < 0.005). Differences in myoglobin expression and abundance, as well as mitochondrial DNA were notable (P < 0.05) across zone. These data suggest inherent differences in SM muscle are key determinants of ham color variation, while postmortem metabolism may play a lesser role in driving this quality attribute.


Assuntos
Músculos Isquiossurais , Carne , Animais , Cor , Glicólise , Concentração de Íons de Hidrogênio , Carne/análise , Músculo Esquelético/metabolismo , Mioglobina/metabolismo , Suínos
4.
Neth Heart J ; 29(6): 330-337, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33184756

RESUMO

BACKGROUND: Treatment of ST-elevation myocardial infarction (STEMI) has improved over the years. Current challenges in the management of STEMI are achievement of early reperfusion and the prevention of microvascular injury. Sonothrombolysis has emerged as a potential treatment for acute myocardial infarction, both for epicardial recanalisation as well as improving microvascular perfusion. This study aims to determine safety and feasibility of sonothrombolysis application in STEMI patients in the ambulance. METHODS: Ten patients with STEMI will be included and treated with sonothrombolysis in the ambulance during transfer to the PCI centre. Safety will be assessed by the occurrence of ventricular arrhythmias and shock during sonothrombolysis intervention. Feasibility will be assessed by the extent of protocol completion and myocardial visibility. Efficacy will be determined by angiographic patency rate, ST-elevation resolution, infarct size and left ventricular volumes, and function measured with cardiovascular magnetic resonance imaging, and contrast and strain echocardiography. A comparison will be made with matched controls using an existing STEMI database. DISCUSSION: Sonothrombolysis is a novel technique for the treatment of cardiovascular thromboembolic disease. The first clinical trials on its use for STEMI have demonstrated promising results. This study will be the first to examine the feasibility of in-ambulance sonothrombolysis for STEMI. TRIAL REGISTRATION: EU Clinical Trials Register (identifier: 2019-001883-31), registered 2020-02-25.

5.
Neth Heart J ; 28(10): 526-536, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32504340

RESUMO

INTRODUCTION: Infective endocarditis (IE) is associated with a high in-hospital and long term mortality. Although progress has been made in diagnostic approach and management of IE, morbidity and mortality of IE remain high. In the latest European guidelines, the importance of the multi-modality imaging in diagnosis and follow up of IE is emphasized. AIM: The aim was to provide information regarding mortality and adverse events of IE, to determine IE characteristics and to assess current use of imaging in the diagnostic workup of IE. METHODS: This is a prospective observational cohort study. We used data from the EURO-ENDO registry. Seven hospitals in the Netherlands have participated and included patients with IE between April 2016 and April 2018. RESULTS: A total of 139 IE patients were included. Prosthetic valve endocarditis constituted 32.4% of the cases, cardiac device related IE 7.2% and aortic root prosthesis IE 3.6%. In-hospital mortality was 14.4% (20 patients) and one-year mortality was 21.6% (30 patients). The incidence of embolic events under treatment was 16.5%, while congestive heart failure or cardiogenic shock occurred in 15.1% of the patients. Transthoracic and transoesophageal echocardiography were performed most frequently (97.8%; 81.3%) and within 3 days after IE suspicion, followed by 18F­fluorodeoxyglucose positron emission tomography/computed tomography (45.3%) within 6 days and multi-slice computed tomography (42.4%) within 7 days. CONCLUSION: We observed a high percentage of prosthetic valve endocarditis, rapid and extensive use of imaging and a relatively low in-hospital and one-year mortality of IE in the Netherlands. Limitations include possible selection bias.

6.
RSC Adv ; 8(45): 25546-25557, 2018 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35539781

RESUMO

In this study, we present a successful simple method for printing and finishing of polyester and cotton fabrics using gold and silver nanoparticles (Au-NPs and Ag-NPs, respectively) as stable, fast colorants and functional components. The surface plasmon resonance (SPR) bands of the colloidal gold and silver NPs were observed at λ max 520 nm and 450 nm, respectively, indicating the presence of spherical Au-NPs and Ag-NPs, which was further confirmed by TEM analysis. The printed samples were subjected to SEM, XRD and EDX analyses. The SEM images and EDX spectra unequivocally confirmed the existence of embedded NPs on the fabric surfaces. Both the cotton and polyester samples possessed excellent color fastness, as indicated from the color fastness test. The functional properties of the printed fabrics indicated that the incorporation of Au-NPs and Ag-NPs into the fabrics simultaneously imparted multifunctional properties such as stable brilliant colors, highly durable antimicrobial activity and very good UV-protection properties.

7.
J Anim Sci ; 94(5): 1791-802, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27285676

RESUMO

Basic principles governing skeletal muscle growth and development, from a cellular point of view, have been realized for several decades. Skeletal muscle is marked by the capacity for rapid hypertrophy and increases in protein content. Ultimately, skeletal muscle growth is controlled by 2 basic means: 1) myonuclear accumulation stemming from satellite cell (myoblast) proliferation and 2) the balance of protein synthesis and degradation. Each process underlies the rapid changes in lean tissue accretion evident during fetal and neonatal growth and is particularly sensitive to nutritional manipulation. Although multiple signals converge to alter skeletal muscle mass, postprandial changes in the anabolic hormone insulin link feed intake with enhanced rates of protein synthesis in the neonate. Indeed, a consequence of insulin-deficient states such as malnutrition is reduced myoblast activity and a net loss of body protein. A well-characterized mechanism mediating the anabolic effect of insulin involves the phosphatidylinositol 3-kinase (PI3K)-mammalian target of rapamycin (mTOR) signaling pathway. Activation of mTOR leads to translation initiation control via the phosphorylation of downstream targets. Modulation of this pathway by insulin, as well as by other hormones and nutrients, accounts for enhanced protein synthesis leading to efficient lean tissue accretion and rapid skeletal muscle gain in the growing animal. Dysfunctional insulin activity during fetal and neonatal stages likely alters growth through cellular and protein synthetic capacities.


Assuntos
Insulina/metabolismo , Desenvolvimento Muscular , Músculo Esquelético/crescimento & desenvolvimento , Transdução de Sinais , Animais , Endocrinologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Biossíntese de Proteínas , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
8.
J Anim Sci ; 86(9): 2277-87, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18502889

RESUMO

This study aimed to establish the relationship between ME intake and energy and nutrient absorption across the portal-drained viscera (PDV) of forage-fed beef steers. Eight Angus (328 +/- 40 kg of BW) steers were surgically fitted with portal, mesenteric arterial, and mesenteric venous catheters, and were fed alfalfa cubes in a replicated 4 x 4 Latin square design with 4 levels of energy intake between 1 and 2 times maintenance energy requirements. On d 28 of each experimental period, p-aminohippuric acid was infused to measure blood and plasma flow across the PDV, and blood samples (1 every hour, for 6 h) were collected simultaneously from arterial and venous catheters for net absorption measurements. Oxygen utilization, and therefore energy utilization, increased (P < 0.05) linearly in relation to ME intake. Glucose net uptake was unaffected, but lactate net release increased linearly in response to ME intake (P < 0.05). Net absorption of all AA except tryptophan, glutamate, and glutamine increased linearly with ME intake (P < 0.05). The constant net absorption of glutamate and glutamine indicated increased net utilization of these AA when dietary supply was increased. These data provide quantitative measures of the PDV effects on energy and AA availability for productive tissues, and suggest that the greater net utilization of some AA when ME intake is increased could relate to their catabolism for energy production. Prediction estimates of small intestinal AA absorption, based on the Cornell Net Carbohydrate and Protein System (CNCPS), exceeded observed net AA PDV absorption. Mean bias represented the greatest proportion (87 to 96%) of the deviation between individual AA absorption and observed net AA PDV absorption, suggesting that the CNCPS model may be used to predict AA net absorption when factors describing AA utilization by the PDV are applied to model predictions.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Bovinos/metabolismo , Trato Gastrointestinal/metabolismo , Medicago sativa , Modelos Biológicos , Sistema Porta/fisiologia , Aminoácidos/sangue , Animais , Glicemia/metabolismo , Ingestão de Alimentos/fisiologia , Ingestão de Energia , Trato Gastrointestinal/irrigação sanguínea , Hemoglobinas/metabolismo , Absorção Intestinal , Ácido Láctico/sangue , Masculino , Consumo de Oxigênio/fisiologia , Ácido p-Aminoipúrico/farmacologia
9.
J Anim Sci ; 85(4): 1006-13, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17202392

RESUMO

The aims of this study were 1) to determine whether transfer of blood urea to the gastrointestinal tract (GIT) or the efficiency of capture of urea N within the GIT is more limiting for urea N salvage, and 2) to establish the relationship between plasma urea concentration and recycling of urea N to the GIT. We used an i.v. urea infusion model in sheep to elevate the urea entry rate and plasma concentrations, thus avoiding direct manipulation of the rumen environment that otherwise occurs when feeding additional N. Four growing sheep (28.1 +/- 0.6 kg of BW) were fed a low-protein (6.8% CP, DM basis) diet and assigned to 4 rates of i.v. urea infusion (0, 3.8, 7.5, or 11.3 g of urea N/d; 10-d periods) in a balanced 4 x 4 Latin square design. Nitrogen retention (d 6 to 9), urea kinetics([(15)N2]urea infusion over 80 h), and plasma AA were determined. Urea infusion increased apparent total tract digestibility of N (29.9 to 41.3%) and DM (47.5 to 58.9%), and N retention (1.45 to 5.46 g/d). The plasma urea N entry rate increased (5.1 to 21.8 g/d) with urea infusion, as did the amount of urea N entering the GIT (4.1 to 13.2 g/d). Urea N transfer to the GIT increased with plasma urea concentration, but the increases were smaller at greater concentrations of plasma urea. Anabolic use of urea N within the GIT also increased with urea infusion (1.43 to 2.98 g/d; P = 0.003), but anabolic use as a proportion of GIT entry was low and decreased (35 to 22%; P = 0.003) with urea infusions. Consequently, much (44 to 67%) of the urea N transferred to the GIT returned to the liver for resynthesis of urea (1.8 to 9.2 g/d; P < 0.05). The present results suggest that transfer of blood urea to the GIT is 1) highly related to blood urea concentration, and 2) less limiting for N retention than is the efficiency of capture of recycled urea N by microbes within the GIT.


Assuntos
Nitrogênio da Ureia Sanguínea , Digestão/fisiologia , Sistema Digestório/metabolismo , Ovinos/metabolismo , Ureia/sangue , Aminoácidos/sangue , Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Animais , Dieta/veterinária , Nitrogênio/metabolismo , Ureia/administração & dosagem
10.
J Anim Sci ; 84 Suppl: E50-9, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16582092

RESUMO

Genomic investigations in animals have begun to reveal the metabolic and physiological functions of genes and protein products. However, a thorough understanding of the genomic roadmaps will require investigative approaches that yield qualitative and quantitative information on the activities, fluxes, and connectivity of pathways involved in nutrient use in farm animals; that is, the metabolic phenotype. Recently, the commercial availability of stable isotope (13C, 15N, 2H)-labeled compounds and highly accurate mass spectrometers has made it possible to probe the details of metabolic pathways involved in macronutrient use. For years, the biological sciences have exploited uniformly 13C-labeled substrates (e.g., glucose, amino acids, nucleic acids) and 13C-mass isotopomer distribution (MID) in their metabolic investigations, whereas their use in the animal sciences is very limited. When [U-13C] substrates are fed, infused, or added to cell incubations, the 13C-skeletons distribute throughout metabolic networks. 13C-Mass isotopomer distribution in intermediates and end products of the pathways provides a signature of the fluxes and activities of pathway enzymes traveled by the precursor molecule. This paper highlights aspects of animal nutrition and metabolism in which [U-13C] substrates and MID can be applied to investigations of amino acid, carbohydrate, and fat metabolism. We will focus on [U-13C] glucose as a tracer in chickens, fish, sheep, and cell cultures to investigate the interconnectivity of the pathways of macronutrient and nucleic acid metabolism, and provide demonstration of the central position of the Krebs cycle in preserving metabolic flexibility via anaplerotic and cataplerotic sequences. Exploitation of this approach in animal sciences offers endless opportunities to provide missing details of the biochemical networks of nutrient use that may prove to be strictly under genomic control.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Isótopos de Carbono , Marcação por Isótopo/veterinária , Metabolismo/fisiologia , Aminoácidos Essenciais/química , Animais , Bovinos , Ciclo do Ácido Cítrico/fisiologia , Feminino , Peixes/metabolismo , Marcação por Isótopo/métodos , Glândulas Mamárias Animais/metabolismo , Espectrometria de Massas/veterinária , Leite/fisiologia , Aves Domésticas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...