Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chromatogr Sci ; 62(2): 120-126, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-37635418

RESUMO

Berberine (Brb) and piperine (Pip) are salient examples of bioactive nutraceuticals possessing a promising role in controlling epilepsy. However, during the development of novel nanoformulation that augments their effects, an adequate determination of each one separately was a challenge since they have nearly the same detection wavelength and diverse solubility profiles. Consequently, a tailored high-performance liquid chromatography technique was developed for their simultaneous detection in routine analyses. The chromatographic separation was achieved using a C18 column. The linear gradient flow of acetonitrile: 0.1%v/v aqueous phosphoric acid was altered from 55:45 to 80:20 v/v over 3 min at a 1.2 mL/min flow rate until the end of the run. Brb and Pip were eluted at 1.6 and 3.4 min, respectively. The linearity of the standard curves was found to be ≥0.999, and the mean % recovery for Brb and Pip lay within the accepted limit. Moreover, the percentage coefficient of variation was <2% for intra- and inter-day precision. Consequently, the developed assay was successfully applied for the quantification of both drugs rapidly with high resolution and minimum interference from each other during the different steps conducted during the nanoformulation development.


Assuntos
Alcaloides , Berberina , Piperidinas , Alcamidas Poli-Insaturadas , Berberina/análise , Cromatografia Líquida de Alta Pressão/métodos , Alcaloides/química , Benzodioxóis , Reprodutibilidade dos Testes
2.
Drug Deliv Transl Res ; 14(2): 400-417, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37598133

RESUMO

Parkinson's disease (PD) is the second most common progressive neurodegenerative disorder associated with increased oxidative stress, the underlying vital process contributing to cell death. Tanshinone IIA (TAN) is a phytomedicine with a documented activity in treating many CNS disorders, particularly PD owing to its unique anti-inflammatory and antioxidant effect. However, its clinical utility is limited by its poor aqueous solubility, short half-life, and hence low concentration reaching targeted cells. This work aimed to develop a biocompatible chitosan-coated nanostructured lipid carriers (CS-NLCs) for effective brain delivery of TAN for PD management. The proposed nanosystem was successfully prepared using a simple melt-emulsification ultra-sonication method, optimized and characterized both in vitro and in vivo in a rotenone-induced PD rat model. The developed TAN-loaded CS-NLCs (CS-TAN-NLCs) showed good colloidal properties (size ≤ 200 nm, PDI ≤ 0.2, and ζ-potential + 20 mV) and high drug entrapment efficiency (> 97%) with sustained release profile for 24 h. Following intranasal administration, CS-TAN-NLCs succeeded to achieve a remarkable antiparkinsonian and antidepressant effect in diseased animals compared to both the uncoated TAN-NLCs and free TAN suspension as evidenced by the conducted behavioral tests and improved histopathological findings. Furthermore, biochemical evaluation of oxidative stress along with inflammatory markers, nuclear factor-kabba ß (NF-Kß) and cathepsin B further confirmed the potential of the CS-TAN-NLCs in enhancing brain delivery and hence the therapeutic effect of TAN of treatment of PD. Accordingly, CS-TAN-NLCs could be addressed as a promising nano-platform for the effective management of PD.


Assuntos
Quitosana , Nanoestruturas , Doença de Parkinson , Animais , Ratos , Encéfalo/metabolismo , Catepsina B/metabolismo , Quitosana/química , Portadores de Fármacos/química , Lipídeos/química , Nanoestruturas/química , NF-kappa B/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Tamanho da Partícula , Subunidade p50 de NF-kappa B/metabolismo
3.
Int J Pharm ; 647: 123551, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37884217

RESUMO

Despite its tremendous potential for type 2 diabetes management, quercetin (QRC) suffers poor gastric stability, poor bioavailability, and extensive first pass metabolism. Drug encapsulation into bilosomes (BSL) has proven enhanced properties in-vitro and in-vivo. Herein, this work endeavoured to evaluate efficacy of QRC-encapsulated bilosomes capped with lactoferrin (LF); a milk protein with antidiabetic potential, for type 2 diabetes oral treatment. The optimized formulation (LF-QRC-BSL) was evaluated in-vitro on α-amylase enzyme inhibition and insulin resistant HepG2 cell model and in vivo on streptozocin/high fat diet induced diabetes in rats. LF-QRC-BSL showed a small size (68.1 nm), a narrow PDI (0.18) and a -25.5 mV zeta potential. A high entrapment efficiency (94 %) with sustained release were also observed. LF-QRC-BSL displayed 100 % permeation through excised diabetic rat intestines after 6 h, 70.2 % inhibition of α-amylase enzyme in-vitro and an augmented recovery of glucose uptake in insulin resistant cells. In diabetic rats, LF-QRC-BSL resulted in significant decrease in blood glucose level, improved lipid profile and tissue injury markers with reduced oxidative stress and inflammatory markers. Further, histopathological examination of the kidneys, liver and pancreas revealed an almost restored normal condition comparable to the negative control. Overall, LF-QRC-BSL have proven to be a promising therapy for type 2 diabetes.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Insulinas , Ratos , Animais , Quercetina , Lipossomos , Lactoferrina , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Experimental/tratamento farmacológico , alfa-Amilases
4.
Int J Pharm ; 645: 123397, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37690657

RESUMO

Skin cancer is a challenging condition of the highest prevalence rate among other types of cancer. Thus, advancement of local therapeutic approaches for skin cancer is highly needed. Recently, the use of phytotherapeutics, like tanshinone IIA (Tan), as anticancer agents has become promising. In this work, we engineered Tan-loaded polycaprolactone nanofibers, biofunctionalized with levan and egg-lecithin (Tan@Lev/EL/PCL-NF) for local skin cancer therapy. Novel Tan@Lev/EL/PCL-NF were prepared using w/o-emulsion electrospinning, employing a 23-factorial design. Composite NF exhibited nanofiber diameter (365.56 ± 46.25 nm), favorable surface-hydrophilicity and tensile strength. Tan@Lev/EL/PCL-NF could achieve favorably controlled-release (100% in 5 days) and Tan skin-deposition (50%). In vitro anticancer studies verified prominent cytotoxicity of Tan@Lev/EL/PCL-NF on squamous-cell-carcinoma cell-line (SCC), with optimum cytocompatibility on fibroblasts. Tan@Lev/EL/PCL-NF exerted high apoptotic activity with evident nuclear fragmentation, G2/M-mitosis cell-cycle-arrest and antimigratory efficacy. In vivo antitumor activity was established in mice, confirming pronounced inhibition of tumor-growth (224.25 ± 46.89%) and relative tumor weight (1.25 ± 0.18%) for Tan@Lev/EL/PCL-NF compared to other groups. Tan@Lev/EL/PCL-NF afforded tumor-biomarker inhibition, upregulation of caspase-3 and knockdown of BAX and MKi67. Efficient anticancer potential was further confirmed by histomorphometric analysis. Our findings highlight the promising anticancer functionality of composite Tan@Lev/EL/PCL-NF, as efficient local skin cancer phytotherapy.

5.
Int J Pharm ; 642: 123163, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37353100

RESUMO

Breast cancer remains the leading cause of cancer-associated mortality in women. Research investigating novel therapeutic approaches is thus crucial, including phytotherapeutics. Pterostilbene (PTS) is a phytochemical agent with promising efficacy against breast cancer. Poor solubility, low bioavailability and chemical instability are major drawbacks compromising PTS functionality. Herein, novel PTS-loaded solid lipid nanoparticles (PTS-SLNs) were fabricated using the ultrasonication technique. Dual-functionalization with lactoferrin (Lf) and chondroitin-sulfate (CS; CS/Lf/PTS-SLNs) was adopted as active-targeting approach. CS/Lf/PTS-SLNs demonstrated nanoparticle-size (223.42 ± 18.71 nm), low PDI (0.33 ± 0.017), acceptable zeta potential (-11.85 ± 0.07 mV) and controlled release (72.93 ± 2.93% after 24 h). In vitro studies on triple-negative MDA-MB-231 revealed prominent cytotoxicity of CS/Lf/PTS-SLNs (2.63-fold IC50 reduction), higher anti-migratory effect and cellular uptake relative to PTS-solution. The in vivo anti-tumor efficacy in an orthotopic cancer model verified the superiority of CS/Lf/PTS-SLNs; achieving 2.4-fold decrease in tumor growth compared to PTS-solution. On the molecular level, CS/Lf/PTS-SLNs enhanced suppression of VEGF, down-regulated cyclin D1 and upregulated caspase-3 and BAX, compared to PTS-solution. Also, immunohistochemical assay confirmed the higher anti-tumorigenic effect of CS/Lf/PTS-SLNs (5.87-fold decrease in Bcl-2 expression) compared to PTS-solution. Our findings highlight CS/Lf/PTS-SLNs as a promising nanoplatform for phytotherapeutic targeted-breast cancer therapy.


Assuntos
Neoplasias da Mama , Nanopartículas , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Lactoferrina/química , Condroitina/uso terapêutico , Lipídeos/química , Nanopartículas/química , Portadores de Fármacos/uso terapêutico , Tamanho da Partícula
6.
Pharmaceutics ; 15(5)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37242722

RESUMO

Fisetin (FS) is considered a safer phytomedicine alternative to conventional chemotherapeutics for breast cancer treatment. Despite its surpassing therapeutic potential, its clinical utility is hampered by its low systemic bioavailability. Accordingly, as far as we are aware, this is the first study to develop lactoferrin-coated FS-loaded ß-cyclodextrin nanosponges (LF-FS-NS) for targeted FS delivery to breast cancer. NS formation through cross-linking of ß-cyclodextrin by diphenyl carbonate was confirmed by FTIR and XRD. The selected LF-FS-NS showed good colloidal properties (size 52.7 ± 7.2 nm, PDI < 0.3, and ζ-potential 24 mV), high loading efficiency (96 ± 0.3%), and sustained drug release of 26 % after 24 h. Morphological examination using SEM revealed the mesoporous spherical structure of the prepared nanosponges with a pore diameter of ~30 nm, which was further confirmed by surface area measurement. Additionally, LF-FS-NS enhanced FS oral and IP bioavailability (2.5- and 3.2-fold, respectively) compared to FS suspension in rats. Antitumor efficacy evaluation in vitro on MDA-MB-231 cells and in vivo on an Ehrlich ascites mouse model demonstrated significantly higher activity and targetability of LF-FS-NS (30 mg/kg) compared to the free drug and uncoated formulation. Consequently, LF-FS-NS could be addressed as a promising formulation for the effective management of breast cancer.

7.
Drug Deliv Transl Res ; 13(11): 2930-2947, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37184747

RESUMO

Inflammatory bowel disease (IBD) is characterized by chronic inflammation along the gastrointestinal tract. For IBD effective treatment, developing an orally administered stable drug delivery system capable of targeting inflammation sites is a key challenge. Herein, we report pH responsive hyaluronic (HA) coated Eudragit S100 (ES) nanoparticles (NPs) for the targeted delivery of budesonide (BUD) (HA-BUD-ES-NPs). HA-BUD-ES-NPs showed good colloidal properties (274.8 ± 2.9 nm and - 24.6 ± 2.8 mV) with high entrapment efficiency (98.3 ± 3.41%) and pH-dependent release profile. The negative potential following incubation in simulated gastrointestinal fluids reflected the stability of HA coat. In vitro studies on Caco-2 cells showed HA-BUD-ES-NPs biocompatibility and enhanced cellular uptake and anti-inflammatory effects as shown by the significant reduction in IL-8 and TNF-α. The oral administration of HA-BUD-ES-NPs in an acetic acid induced colitis rat model significantly mitigated the symptoms of IBD, and improved BUD therapeutic efficacy compared to drug suspension. This was proved via the improvement in disease activity index and ulcer score in addition to refined histopathological findings. Also, the assessment of inflammatory markers, epithelial cadherin, and mi-R21 all reflected the higher efficiency of HA-BUD-ES-NPs compared to free drug and uncoated formulation. We thus suggest that HA-BUD-ES-NPs provide a promising drug delivery platform for the management and site specific treatment of IBD.


Assuntos
Colite , Doenças Inflamatórias Intestinais , MicroRNAs , Nanopartículas , Humanos , Ratos , Animais , Budesonida , Ácido Acético , Células CACO-2 , Colite/induzido quimicamente , Colite/tratamento farmacológico , Inflamação/tratamento farmacológico , Nanopartículas/química , Doenças Inflamatórias Intestinais/tratamento farmacológico , Caderinas/uso terapêutico , MicroRNAs/uso terapêutico , Ácido Hialurônico/química
8.
Eur J Pharm Biopharm ; 188: 182-200, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37068561

RESUMO

Berberine hydrochloride is a plant alkaloid with versatile medicinal applications, yet it has suffered from multiple limitations in its usage. Nonetheless, the acknowledged role of berberine in controlling seizures has fuelled the need to develop a nanosystem capable of delivering it safely and efficiently to the brain. Consequently, zein and hyaluronic acid were chosen for this purpose, and about twenty formulations with different preliminary factors were screened. Afterward, three promising formulations were loaded with berberine and characterized to select an optimum formulation for further in vivo inspection. The B2 formula of particle size of 297.2 nm ± 1.86 and % entrapment efficiency of 83.75% ± 1.39 has succeeded in the increment of the brain uptake of berberine. Moreover, compared to free berberine suspension, the severity of pilocarpine-induced status epilepticus in rats was depleted after the subcutaneous administration of B2. The hippocampal tissue of rats receiving B2 showed signs of reduced neuro-degeneration, remarkably lower expression levels of COX-2 and TNF-α, and enhanced antioxidant activity. Finally, the relative safety of the developed system was determined after searching for any sign of intoxication or behavioral changes. In conclusion, the developed berberine loaded composite nanoparticles successfully delivered berberine across the BBB securely to ameliorate the deteriorating impact of pilocarpine-induced epilepsy.


Assuntos
Berberina , Epilepsia , Nanopartículas , Zeína , Ratos , Animais , Ácido Hialurônico , Pilocarpina , Encéfalo , Epilepsia/induzido quimicamente , Epilepsia/tratamento farmacológico
9.
Drug Deliv ; 29(1): 3270-3280, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36330597

RESUMO

Liver fibrosis is a global life-threatening disorder with no approved treatment. It leads to serious hepatic complications when progressive, such as cirrhosis and carcinoma. Luteolin (LUT) is a plant flavonoid possessing a promising therapeutic potential in various liver diseases particularly, liver fibrosis. It was reported to have potent anti-inflammatory and antioxidant properties. It also suppresses the proliferation of activated hepatic stellate cells (HSC) and induces their apoptosis. However, its poor aqueous solubility and exposure to metabolism hinder its clinical use. Mesenchymal stem cells (MSCs)-derived exosomes, nano-sized extracellular vesicles, have recently emerged as natural biocompatible drug delivery vehicles permitting efficient drug delivery. Accordingly, the present study aimed for the first time to investigate the potential of bone marrow MSCs-derived exosomes to improve LUTs antifibrotic effectiveness. LUT-loaded exosomes (LUT-Ex) were successfully developed, optimized and subjected to both in vitro and in vivo characterization. The elaborated LUT-Ex presented good colloidal properties (size; 150 nm, PDI; 0.3 and ζ-potential; -28 mV), typical vesicular shape, reasonable drug entrapment efficiency (40%) with sustained drug release over 72 h. Additionally, the cellular uptake study of coumarin-6-loaded exosomes in HEP-G2 revealed a significant enhancement in their uptake by 78.4% versus free coumarin-6 solution (p ≤ 0.001). Following a single intraperitoneal injection, LUT-Ex revealed a superior antifibrotic activity compared with either LUT-suspension or blank exosomes as evidenced by the results of biochemical and histopathological evaluation. In conclusion, the elaborated LUT-Ex could be addressed as a promising nanocarrier for effective treatment of liver fibrosis.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Humanos , Exossomos/metabolismo , Luteolina/farmacologia , Luteolina/metabolismo , Células-Tronco Mesenquimais/metabolismo , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Cumarínicos
10.
Biomed Pharmacother ; 155: 113666, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36099790

RESUMO

Acute lung injury (ALI) and its more serious form; acute respiratory distress syndrome are major causes of COVID-19 related mortality. Finding new therapeutic targets for ALI is thus of great interest. This work aimed to prepare a biocompatible nanoformulation for effective pulmonary delivery of the herbal drug; tanshinone-IIA (TSIIA) for ALI management. A nanoemulsion (NE) formulation based on bioactive natural ingredients; rhamnolipid biosurfactant and tea-tree oil, was developed using a simple ultrasonication technique, optimized by varying oil concentration and surfactant:oil ratio. The selected TSIIA-NE formulation showed 105.7 nm diameter and a PDI âˆ¼ 0.3. EE exceeded 98 % with biphasic sustained drug release and good stability over 3-months. In-vivo efficacy was evaluated in lipopolysaccharide (LPS)-induced ALI model. TSIIA-NE (30 µg/kg) was administered once intratracheally 2 h after LPS instillation. Evaluation was performed 7days post-treatment. Pulmonary function assessment, inflammatory, oxidative stress and glycocalyx shedding markers analysis in addition to histopathological examination of lung tissue were performed. When compared to untreated rats, in-vivo efficacy study demonstrated 1.4 and 1.9-fold increases in tidal volume and minute respiratory volume, respectively, with 32 % drop in wet/dry lung weight ratio and improved levels of arterial blood gases. Lung histopathology and biochemical analysis of different biomarkers in tissue homogenate and bronchoalveolar lavage fluid indicated that treatment may ameliorate LPS-induced ALI symptoms thorough anti-oxidative, anti-inflammatory effects and inhibition of glycocalyx degradation. TSIIA-NE efficacy was superior to free medication and blank-NE. The enhanced efficacy of TSIIA bioactive nanoemulsion significantly suggests the pharmacotherapeutic potential of bioactive TSIIA-NE as a promising nanoplatform for ALI.


Assuntos
Lesão Pulmonar Aguda , Tratamento Farmacológico da COVID-19 , Ratos , Animais , Lipopolissacarídeos/farmacologia , Glicocálix/patologia , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/patologia , Pulmão , Anti-Inflamatórios/farmacologia , Tensoativos/farmacologia , Gases/efeitos adversos , Gases/metabolismo , Chá/metabolismo
11.
Nanomedicine (Lond) ; 17(15): 1055-1075, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-36066036

RESUMO

Aim: To formulate and assess the oral anti-obesity effect of polymeric-based pterostilbene (PS)-loaded nanoparticles. Methods: Pterostilbene-hydroxypropyl ß-cyclodextrin inclusion complex loaded in chitosan nanoparticles (PS/HPßCD-NPs) were prepared and characterized in vitro. Cytotoxicity, pharmacokinetics and anti-obesity effects were assessed on Caco-2 cell line and high-fat-diet-induced obesity rat model, respectively. In vivo assessment included histological examination, protein and gene expression of obesity biomarkers in adipose tissues. Results: Safe PS/HPßCD-NPs were successfully prepared with improved bioavailability compared with free PS. PS/HPßCD-NPs showed an improved anti-obesity effect, as supported by histological examination, lipid profile, UCP1 gene expression and protein expression of SIRT1, COX2, IL-6 and leptin. Conclusion: Orally administered PS nanoparticles represent a new and promising anti-obesity strategy owing to the sustainable weight loss and minimal side effects; this may be of great socio-economic impact.


Weight gain or obesity represents a major health risk and leads to diseases including cancer and heart disease. Most anti-obesity medications have significant side effects, and there are notable challenges concerning their availability in the body to produce an effect. Pterostilbene is a herbal drug with beneficial anti-obesity effects. However, it has problems such as poor solubility which restrict its use. The aim of the study was to formulate pterostilbene in a nano-based delivery system and fully characterize its anti-obesity effect when given orally. We evaluated the safety and anti-obesity effects of pterostilbene nanoparticles in cells and in obese rats fed on a high-fat diet. We also looked at how the body absorbs, distributes and gets rid of these nanoparticles. The prepared nanoparticles were nontoxic, with an improved anti-obesity effect; they decreased cholesterol levels and helped in changing white fat (which stores fat) to brown fat (which burns calories). We conclude that the developed pterostilbene nanoparticles, given orally, are a new and promising anti-obesity strategy given their long-lasting effect on weight loss and the minimal side effects. This may be of great economic and societal impact.


Assuntos
Quitosana , Nanopartículas , Animais , Ratos , 2-Hidroxipropil-beta-Ciclodextrina/uso terapêutico , Células CACO-2 , Ciclo-Oxigenase 2 , Suplementos Nutricionais , Interleucina-6 , Leptina/genética , Leptina/uso terapêutico , Lipídeos/uso terapêutico , Obesidade/tratamento farmacológico , Sirtuína 1/uso terapêutico
12.
Pharmaceutics ; 14(1)2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-35057036

RESUMO

Flurbiprofen (FLUR) is a potent non-steroidal anti-inflammatory drug used for the management of arthritis. Unfortunately, its therapeutic effect is limited by its rapid clearance from the joints following intra-articular injection. To improve its therapeutic efficacy, hyaluronic acid-coated bovine serum albumin nanoparticles (HA-BSA NPs) were formulated and loaded with FLUR to achieve active drug targeting. NPs were prepared by a modified nano-emulsification technique and their HA coating was proven via turbidimetric assay. Physicochemical characterization of the selected HA-BSA NPs revealed entrapment efficiency of 90.12 ± 1.06%, particle size of 257.12 ± 2.54 nm, PDI of 0.25 ± 0.01, and zeta potential of -48 ± 3 mv. The selected formulation showed in-vitro extended-release profile up to 6 days. In-vivo studies on adjuvant-induced arthritis rat model exhibited a significant reduction in joint swelling after intra-articular administration of FLUR-loaded HA-BSA NPs. Additionally, there was a significant reduction in CRP level in blood as well as TNF-α, and IL-6 levels in serum and joint tissues. Immunohistochemical study indicated a significant decrease in iNOS level in joint tissues. Histopathological analysis confirmed the safety of FLUR-loaded HA-BSA NPs. Thus, our results reveal that FLUR loaded HA-BSA NPs have a promising therapeutic effect in the management of arthritis.

13.
Int J Nanomedicine ; 16: 8013-8033, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34916792

RESUMO

INTRODUCTION: Liver fibrosis represents a serious global disease with no approved treatment. Tanshinone IIA (TSIIA) is a phytomedicine with documented activity in treating many hepatic disorders. TSIIA has been reported to have potent anti-inflammatory and antioxidant properties. It can also induce apoptosis for activated hepatic stellate cells, and is thereby considered as a promising herbal remedy for treating fibrotic liver. However, its poor aqueous solubility, short half-life, exposure to the first-pass effect, and low concentration reaching targeted cells constitute the major barriers hindering its effective therapeutic potential. Therefore, this work aimed at enhancing TSIIA systemic bioavailability together with achieving active targeting potential to fibrotic liver via its incorporation into novel modified lipid nanocapsules (LNCs). METHODS: Blank and TSIIA-loaded LNCs modified with either hyaluronate sodium or phosphatidyl serine were successfully prepared, optimized, and characterized both in vitro and in vivo. RESULTS: The developed LNCs showed good colloidal properties (size ≤100 nm and PDI ≤0.2), high drug-entrapment efficiency (>97%) with sustained-release profile for 24 hours, high storage stability up to 6 months, and good in vitro serum stability. After a single intraperitoneal injection, the administered LNCs exhibited a 2.4-fold significant increase in AUC0-∞ compared with the TSIIA suspension (p≤0.01). Biodistribution-study results proved the liver-targeting ability of the prepared modified LNCs, with a significant ~1.5-fold increase in hepatic accumulation compared with the unmodified formulation (p≤0.05). Moreover, the modified formulations had an improved antifibrotic effect compared with both unmodified LNCs and TSIIA suspension, as evidenced by the results of biochemical and histopathological evaluation. CONCLUSION: The modified TSIIA-LNCs could be regarded as promising novel targeted nanomedicines for effective management of liver fibrosis.


Assuntos
Nanocápsulas , Abietanos , Humanos , Lipídeos , Cirrose Hepática/tratamento farmacológico , Distribuição Tecidual
14.
Eur J Pharm Biopharm ; 168: 166-183, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34481049

RESUMO

Hepatocellular carcinoma (HCC) is a prevalent liver cancer representing the fourth most lethal cancer worldwide. Trans-Resveratrol (T-R) possesses a promising anticancer activity against HCC. However, it suffers from poor bioavailability because of the low solubility, chemical instability, and hepatic metabolism. Herein, we developed T-R-loaded nanocochleates using a simple trapping method. Nanocarriers were optimized using a comprehensive in-vitro characterization toolset and evaluated for the anticancer activity against HepG2 cell line. T-R-loaded nanocochleates demonstrated monodispersed cylinders (163.27 ± 2.68 nm and 0.25 ± 0.011 PDI) and -46.6 mV ζ-potential. They exhibited a controlled biphasic pattern with minimal burst followed by sustained release for 72 h. Significant enhancements of Caco-2 transport and ex-vivo intestinal permeation over liposomes, with 1.8 and 2.1-folds respectively, were observed. Nanocochleates showed significant reduction of 24 h IC50 values compared to liposomes and free T-R. Moreover, an efficient knockdown of anti-apoptotic (Bcl-2) and cancer stemness (NANOG) genes was demonstrated. To the best of our knowledge, we are the first to develop T-R loaded nanocochleates and scrutinize its potential in suppressing NANOG expression, 2-folds lower, compared to free T-R. According to these auspicious outcomes, nanocochleates represent a promising nanoplatform to enhance T-R oral permeability and augment its anticancer efficacy in the treatment of HCC.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Nanopartículas , Resveratrol/administração & dosagem , Administração Oral , Animais , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Células CACO-2 , Células Hep G2 , Humanos , Lipossomos , Masculino , Tamanho da Partícula , Ratos , Ratos Wistar , Resveratrol/química , Resveratrol/farmacologia , Solubilidade
15.
Int J Pharm ; 607: 121002, 2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34390809

RESUMO

3D printing has revolutionized pharmaceutical research, with applications encompassing tissue regeneration and drug delivery. Adopting 3D printing for pharmaceutical drug delivery personalization via nanoparticle-reinforced hydrogel scaffolds promises great regenerative potential. Herein, we engineered novel core/shell, bio-inspired, drug-loaded polymeric hydrogel scaffolds for pharmaceutically personalized drug delivery and superior osteoregeneration. Scaffolds were developed using biopolymeric blends of gelatin, polyvinyl alcohol and hyaluronic acid and integrated with composite doxycycline/hydroxyapatite/polycaprolactone nanoparticles (DX/HAp/PCL) innovatively via 3D printing. The developed scaffolds were optimized for swelling pattern and in-vitro drug release through tailoring the biphasic microstructure and wet/dry state to attain various pharmaceutical personalization platforms. Freeze-dried scaffolds with nanoparticles reinforcing the core phase (DX/HAp/PCL-LCS-FD) demonstrated favorably controlled swelling, preserved structural integrity and controlled drug release over 28 days. DX/HAp/PCL-LCS-FD featured double-ranged pore size (90.4 ± 3.9 and 196.6 ± 38.8 µm for shell and core phases, respectively), interconnected porosity and superior mechanical stiffness (74.5 ± 6.8 kPa) for osteogenic functionality. Cell spreading analysis, computed tomography and histomorphometry in a rabbit tibial model confirmed osteoconduction, bioresorption, immune tolerance and bone regenerative potential of the original scaffolds, affording complete defect healing with bone tissue. Our findings suggest that the developed platforms promise prominent local drug delivery and bone regeneration.


Assuntos
Nanopartículas , Alicerces Teciduais , Animais , Doxiciclina , Poliésteres , Porosidade , Impressão Tridimensional , Coelhos , Engenharia Tecidual
16.
Biomater Sci ; 9(11): 4019-4039, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-33899858

RESUMO

The versatility of 3D printing has rendered it an indispensable tool for the fabrication of composite hydrogel scaffolds, offering bone biomimetic features through inorganic and biopolymeric components as promising platforms for osteoregeneration. In this work, extrusion-based 3D printing was employed for the realization of osteoconductive composite biopolymer-based hydrogel scaffolds reinforced with hybrid bioactive hydroxyapatite/polycaprolactone nanoparticles (HAp/PCL NPs) for osteoregeneration. The printing technique was optimized for ink printability and viscosity and crosslinking parameters, where a biopolymeric blend of gelatin, polyvinyl alcohol and hyaluronic acid was developed as innovative plain polymeric ink (PPI). Scaffolds were fabricated by 3D printing adopting a biphasic core/shell geometry, where the core phase of the scaffolds was reinforced with HAp/PCL NPs; the scaffolds were then freeze-dried. Novel composite freeze-dried, loaded-core scaffolds, HAp/PCL NPs-LCS-FD exhibited controlled swelling and maintained structural integrity for 28 days. The developed HAp/PCL NPs-LCS-FD also demonstrated double-ranged pore size, interconnected porosity and efficient mechanical stiffness and strength, favorable for osteoconductive actions. Cell infiltration studies, computed tomography and histomorphometry demonstrated that HAp/PCL NPs-LCS-FD afforded osteoconduction, biodegradation, biocompatibility and bone healing in rabbit tibial model, acting as a template for new bone formation. Our findings suggest that HAp/PCL NPs-LCS-FD could offer prominent bone regeneration and could be involved in various bone defects.


Assuntos
Durapatita , Nanopartículas , Animais , Regeneração Óssea , Hidrogéis , Poliésteres , Porosidade , Impressão Tridimensional , Coelhos , Engenharia Tecidual , Alicerces Teciduais
17.
Int J Nanomedicine ; 16: 1103-1126, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33603371

RESUMO

BACKGROUND: Besides its antimicrobial action, doxycycline (DX) has lately been repurposed as a small-molecule drug for osteogenic purposes. However, osteogenic DX application is impeded by its dose-dependent cytotoxicity. Further, high-dose DX impairs cell differentiation and mineralization. PURPOSE: Integrating DX into a biomaterial-based delivery system that can control its release would not only ameliorate its cytotoxic actions but also augment its osteogenic activity. In this work, we managed to engineer novel composite DX-hydroxyapatite-polycaprolactone nanoparticles (DX/HAp/PCL) to modify DX osteogenic potential. METHODS: Employing a 23-factorial design, we first optimized HApN for surface-area attributes to maximize DX loading. Composite DX/HAp/PCL were then realized using a simple emulsification technique, characterized using various in vitro methods, and evaluated for in vitro osteogenesis. RESULTS: The developed HApN exhibited a favorable crystalline structure, Ca:P elemental ratio (1.67), mesoporous nature, and large surface area. DX/HAp/PCL achieved the highest reported entrapment efficiency (94.77%±1.23%) of DX in PCL-based particles. The developed composite system achieved controlled release of the water-soluble DX over 24 days. Moreover, the novel composite nanosystem managed to significantly ameliorate DX cytotoxicity on bone-marrow stem cells, as well as enhance its overall proliferation potential. Alkaline phosphatase and mineralization assays revealed superior osteodifferentiation potential of the composite system. Quantification of gene expression demonstrated that while DX solution was able to drive bone-marrow stem cells down the osteogenic lineage into immature osteoblasts after 10-day culture, the innovative composite system allowed maturation of osteodifferentiated cells. To the best of our knowledge, this is the first work to elaborate the impact of DX on the expression of osteogenic genes: RUNX2, OSP, and BSP. Further, the osteogenicity of a DX-loaded particulate-delivery system has not been previously investigated. CONCLUSION: Our findings indicate that repurposing low-dose DX in complementary biomaterial-based nanosystems can offer a prominent osteogenic candidate for bone-regeneration purposes.


Assuntos
Materiais Biocompatíveis/química , Diferenciação Celular , Doxiciclina/farmacologia , Reposicionamento de Medicamentos/métodos , Nanocompostos/química , Osteoblastos/citologia , Osteogênese , Células Cultivadas , Doxiciclina/química , Durapatita/química , Humanos , Poliésteres , Alicerces Teciduais/química
18.
Mater Sci Eng C Mater Biol Appl ; 119: 111599, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33321643

RESUMO

Hydroxyapatite nanoparticles (HApN) are largely employed as osteogenic inorganic material. Inorganic/polymeric hybrid nanostructures can provide versatile bioactivity for superior osteogenicity, particularly as nanoparticles. Herein, we present hybrid biomaterial-based hydroxyapatite/polycaprolactone nanoparticles (HAp/PCL NPs) realized using simple preparation techniques to augment HApN osteogenicity. Using wet chemical precipitation, we optimized HApN crystalline properties utilizing a 23-factorial design. Optimized HApN exhibited typical Ca/P elemental ratio with high reaction yield. Surface area analysis revealed their mesoporous nature and high surface area. Hybrid HAp/PCL NPs prepared using direct emulsification-solvent evaporation maintained HApN crystallinity with no observed chemical interactions. To the best of our knowledge, we are the first to elaborate the biocompatibility and osteogenicity of nanoparticulate hybrid HAp/PCL. Hybrid HAp/PCL NPs outperformed HApN regarding mesenchymal cell proliferation and osteodifferentiation with reduction of possible cytotoxicity. Unlike HApN, hybrid HAp/PCL NPs presented moderate expression of early osteogenic markers, Runx-2 and osteopontin and significantly elevated expression of the late osteogenic marker, bone sialoprotein after 10-day culture. Our results indicate that hybrid bioactive HAp/PCL NPs could offer a more prominent osteogenic potential than plain HApN for bone regenerative applications as a standalone nanoplatform or as part of complex engineered systems.


Assuntos
Durapatita , Nanopartículas , Diferenciação Celular , Osteogênese , Poliésteres , Alicerces Teciduais
19.
Int J Pharm ; 586: 119598, 2020 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-32629068

RESUMO

Tanshinone IIA (TSIIA) is a promising phytomedicine that has been extensively studied due to its numerous biological activities, especially as an anticancer drug. However, it suffers from poor oral bioavailability owing to low aqueous solubility, poor permeability and exposure to first-pass metabolism. This study endeavored to improve TSIIA oral bioavailability by encapsulation into lipid nanocapsules (LNCs) for the first time. A previously reported phase-inversion method was used to prepare Tanshinone II A loaded LNCs (TSIIA-LNCs) with slight modifications based on a constructed phase diagram. They were then in-vitro characterized and their oral pharmacokinetics were studied in rats. TSIIA-LNCs showed excellent colloidal properties (size; 70 nm, PDI < 0.2 and zeta-potential; -13.5 mV), a high percent entrapment efficiency (98%) and a good drug payload (2.6 mg/g). Furthermore, the in-vivo pharmacokinetic study revealed a significant enhancement in both the rate and extent of absorption of TSIIA-LNCs compared with TSIIA suspension with about 3.6-fold increase in AUC 0-inf value (p ≤ 0.01). Additionally, a significant increase in both half-life and mean residence time was exhibited by TSIIA-LNCs (p ≤ 0.01), confirming their long circulating properties. Therefore, the elaborated LNCs could be addressed as a promising nanoplatform permitting higher TSIIA oral bioavailability.


Assuntos
Nanocápsulas , Abietanos , Animais , Disponibilidade Biológica , Lipídeos , Ratos
20.
J Microencapsul ; 35(1): 102-113, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29310481

RESUMO

Brimonidine ocular hypotensive effect can be enhanced by increasing residence time and corneal penetration. The current work aimed to formulate, evaluate and compare nanostructured lipid carriers (NLCs) to solid lipid nanoparticles (SLNs) and commercial eye drops for controlled brimonidine delivery. NLCs prepared by modified high shear homogenisation were spherical with a mean size of 151.97 ± 1.98 nm, negative zeta potential (ZP) of -44.2 ± 7.81 mV, % entrapment efficiency (EE) of 83.631 ± 0.495% and low crystallinity index (CI) (17.12%), indicating a better drug incorporation. Moreover, they kept stable during storage at 4 °C for 3 months. Permeability coefficient of NLCs was 1.227 folds higher than that of SLNs. Histological examination revealed localisation of NLCs in the anterior ocular chamber. NLCs revealed the most sustained and highest intraocular pressure (IOP) lowering activity (-13.14 ± 1.28 mmHg) in rabbits. In conclusion, NLCs is a promising approach for IOP reduction compared to eye drops and SLNs.


Assuntos
Tartarato de Brimonidina , Portadores de Fármacos , Avaliação Pré-Clínica de Medicamentos , Pressão Intraocular/efeitos dos fármacos , Lipídeos , Nanopartículas/química , Hipertensão Ocular , Soluções Oftálmicas , Animais , Tartarato de Brimonidina/química , Tartarato de Brimonidina/farmacocinética , Tartarato de Brimonidina/farmacologia , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Lipídeos/química , Lipídeos/farmacocinética , Lipídeos/farmacologia , Hipertensão Ocular/tratamento farmacológico , Hipertensão Ocular/metabolismo , Hipertensão Ocular/patologia , Soluções Oftálmicas/química , Soluções Oftálmicas/farmacocinética , Soluções Oftálmicas/farmacologia , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...