Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
AAPS PharmSciTech ; 24(7): 182, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37697137

RESUMO

The combination of herbal drugs with a topical antibacterial for managing a chronic disease like acne vulgaris has emerged lately to settle side effects and bacterial multidrug resistance. Mixed micelles (MMs) incorporated into nanogel were explored for hybrid delivery of curcumin (Cur) and fusidic acid (FA) combination presenting a multi-strategic treatment. Curcumin-fusidic acid-loaded mixed micelles (Cur-FA-MMs) were assessed for size, surface charge, compatibility, in vitro release, and encapsulation. The selected formula was further loaded into nanogel and investigated for viscosity, ex vivo permeation, and in vivo potential. Cur-FA-MMs exhibited uniform nanosized spherical morphology, and negative surface charge affording high encapsulation for both drugs with a biphasic in vitro release over a period of 48h and good colloidal stability. The attained Cur-FA-MM-loaded nanogel had optimum viscosity with remarkable permeation coefficient values nearly 2-fold that related to plain nanogel. The pharmacodynamic effect of Cur on FA was pronounced by the significant improvement of the skin's degree of inflammation, epidermal hypertrophy, and congestion in animals treated with Cur-FA-MM-loaded nanogel. In conclusion, micellar nanogel could enable the progressive effect of Cur (an antioxidant with reported antibiotic activity) on FA (antibiotic) and decrease the risk of emerging antibiotic resistance by enhancing the solubility and permeation of Cur.


Assuntos
Acne Vulgar , Curcumina , Animais , Ácido Fusídico , Curcumina/farmacologia , Micelas , Nanogéis , Antibacterianos/farmacologia , Acne Vulgar/tratamento farmacológico
2.
Nanomaterials (Basel) ; 12(18)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36144898

RESUMO

The encapsulation of pesticides within nanoparticles is a promising approach of advanced technology in sustainable agriculture. Lambda-cyhalothrin (LC) was encapsulated by the ionotropic gelation technique into chitosan (CS)/tripolyphosphate (TPP) and CS/alginate (ALG) matrixes. CS-LC nanoparticles were characterized, and their efficacy was then evaluated against the key pest of soft fruits in Europe and the United States, Drosophila suzukii. The encapsulation efficiency (74%), nanoparticle yield (80%), polydispersity index (0.341), zeta potential (-23.1 mV) and particle size (278 nm) were determined at the optimum conditions. FTIR confirmed the cross-linkage between CS and TPP/ALG in the nanoparticles. The optimum formula recommended by the fractional factorial design was associated with the formulation variables of CS of high or low molecular weight, cross-linking agent (TPP), LC concentration (1.5% w/v) and stirring rate (1500 rpm), showing the highest desirability value (0.5511). CS-LC nanoparticles of the lowest particle size (278 nm) exhibited the highest percent mortality of D. suzukii males (86%) and females (84%), exceeding that caused by the commercial product (Karate-zeon® 10% CS) at 2 HAT. This is the first work to use the ionic gelation technique to make LC nanoparticles, to the best of our knowledge. The encapsulation of chemical pesticides within biodegradable polymeric nanoparticles could be helpful for establishing a sustainable IPM strategy with benefits for human and environmental health and the lifetime of pesticides.

3.
AAPS PharmSciTech ; 23(1): 34, 2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-34950989

RESUMO

Skin ulcers have increased sharply due to rise in the incidence of obesity and diabetes. This study investigated lipid nanocarriers as a strategy to improve the efficacy of levofloxacin (LV) in penetrating skin. Two surfactant types and different lipid mixtures were used in preparation of lipid nanocarriers. Mean particle size, percentage entrapment efficiency (%EE), in vitro release, and antimicrobial activity were examined. The selected formula was incorporated into a chitosan (CS) film that was subjected to physic-chemical characterization and ex vivo permeation study. The selected formula showed particle size, PDI, and ZP: 80.3 nm, -0.21, and -26 mV, respectively, synchronized with 82.12 %EE. In vitro release study showed slow biphasic release of LV from lipid nanocarriers. The antimicrobial effect illustrated statistically significant effect of lipid nanocarriers on decreasing the minimum effective concentration (MIC) of LV, particularly against E. coli. The optimized nanocarriers' formula loaded into CS film was clear, colorless, translucent, and smooth in texture. Based on the release profiles, it could be speculated that the CS film loaded with LV nanocarriers can maintain the antibacterial activity for 4 consecutive days. Thus, the local delivery of the drug in a sustained release manner could be predicted to enhance the therapeutic effect. Further clinical studies are strongly recommended. Graphical Abstract.


Assuntos
Levofloxacino , Nanopartículas , Portadores de Fármacos , Escherichia coli , Lipídeos , Tamanho da Partícula
4.
Drug Dev Ind Pharm ; 44(2): 316-328, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29096550

RESUMO

Coenzyme Q10 (CoQ10) is an insoluble, poorly permeable antioxidant with great biological value which acts as anti-aging and anti-wrinkle agent. To improve its permeability through topical application, the current study aimed at formulating oil/water (o/w) nanoemulsion (NE) as an efficient vehicle for delivering (CoQ10) through the skin barriers. The solubility of (CoQ10) was tested for various oils, surfactants (S), and co-surfactants (CoS). The NE region was determined by constructing pseudoternary phase diagrams. NE formulae containing 1, 2, and 3% w/w drug have been subjected to thermodynamic stability test. The formulae that passed thermodynamic stability tests were characterized by physical properties as pH, viscosity, refractive index, droplet size, zeta-potential, TEM, electroconductivity, in vitro release, and ex vivo permeation. The formula 'F2' containing 10% w/w isopropyl myristate (oil phase), 60% w/w of Tween 80: Transcutol HP mixture (S/CoSmix) at ratio 2:1, 30% w/w water and 2% w/w drug was evaluated for its anti-wrinkle efficiency using an animal model. The 'F2' formula showed 11.76 ± 1.1 nm droplet size, 1.4260 ± 0.0016 refractive index, 0.228 PDI, -14.7 ± 1.23 mv zeta potential, 7.06 ± 0.051 pH, 199.05 ± 0.35 cp viscosity, and the highest percentage of drug release in the selected dissolution media. About 47.21% of the drug was released in phosphate buffer 7.4 containing 5% w/v Labrasol and 5% w/v isopropyl alcohol through 24 h. It also showed the highest drug flux (Jss = 3.164 µg/cm2/h), enhancement ratio (Er = 8.32), and permeability coefficient (Kp = 22.14 × 10-4 cm2/h). CoQ10 NE reduced the skin wrinkles and gave the skin smooth appearance. Our investigation suggests the potential use of NE as a vehicle for enhancing solubility and permeability of CoQ10 and thus improving its anti-wrinkle efficiency.


Assuntos
Emulsões/química , Nanopartículas/química , Absorção Cutânea/fisiologia , Envelhecimento da Pele/efeitos dos fármacos , Ubiquinona/análogos & derivados , Administração Cutânea , Animais , Química Farmacêutica , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Feminino , Concentração de Íons de Hidrogênio , Tamanho da Partícula , Ratos , Ratos Wistar , Solubilidade , Propriedades de Superfície , Tensoativos/química , Ubiquinona/administração & dosagem , Ubiquinona/farmacologia , Viscosidade
5.
Drug Deliv ; 22(8): 1010-1017, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24188427

RESUMO

Nanoemulsions were investigated as transdermal delivery systems for indomethacin. Six formulae were prepared using Triacetin, capryol 90 and labrafil as oils; Tween 80 and pluronic F127 as surfactants and transcutol and propylene glycol as co-surfactants. The continuous phase was that one with the larger volume fraction regardless of the hydrophile-lipophile balance of the surfactant/co-surfactant mixture. Surfactant type had significant effects on particle size and rheological properties of the nanoemulsions. Pluronic-based formulae recorded the lowest particle sizes and the highest viscosities. The prepared nanoemulsions increased drug solubility up to 610-fold compared with water. Refractive index measurements proved the compatibility between indomethacin and the used nanoemulsion components. Indomethacin was almost completely ionized at the pH values of the prepared nanoemulsions, suggesting drug absorption via the hydrophilic pathway of the skin upon topical application. Nanoemulsions controlled indomethacin release through semipermeable membrane and enhanced its permeation through excised newly born albino rat skin. The formulae were stable for six months at ambient conditions. Transdermal single application of selected formulae resulted in effective plasma levels up to 32 h in rats. Nanoemulsions were significantly superior to other investigated transdermal approaches at solubilizing indomethacin and achieving higher plasma levels.

6.
AAPS PharmSciTech ; 11(4): 1695-702, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21108027

RESUMO

Considering the advantageous for the rectal administration of non-steroidal anti-inflammatory drugs, the objective of this study was to formulate and evaluate rectal mucoadhesive hydrogels loaded with diclofenac-sodium chitosan (DFS-CS) microspheres. Hydroxypropyl methylcellulose (HPMC; 5%, 6%, and 7% w/w) and Carbopol 934 (1% w/w) hydrogels containing DFS-CS microspheres equivalent to 1% w/w active drug were prepared. The physicochemical characterization revealed that all hydrogels had a suitable pH for rectal application (6.5-7.4). The consistency of HPMC hydrogels showed direct proportionality to the concentration of the gelling agent, while carbopol 934 gel showed its difficulty for rectal administration. Farrow's constant for all hydrogels were greater than one indicating pseudoplastic flow. In vitro drug release from the mucoadhesive hydrogel formulations showed a controlled drug release pattern, reaching 34.6-39.7% after 6 h. The kinetic analysis of the release data revealed that zero-order was the prominent release mechanism. The mucoadhesion time of 7% w/w HPMC hydrogel was 330 min, allowing the loaded microspheres to be attached to the surface of rectal mucosa. Histopathological examination demonstrated the lowest irritant response to the hydrogel loaded with DFS-CS microspheres in response to other forms of the drug.


Assuntos
Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/química , Diclofenaco/administração & dosagem , Diclofenaco/química , Sistemas de Liberação de Medicamentos , Hidrogéis/química , Adesivos , Administração Retal , Quitosana/química , Composição de Medicamentos , Concentração de Íons de Hidrogênio , Microesferas , Reologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA