Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicol Appl Pharmacol ; 401: 115092, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32512068

RESUMO

Inflammatory breast cancer (IBC) is a highly metastatic and lethal breast cancer. As many as 25-30% of IBCs are triple negative (TN) and associated with low survival rates and poor prognosis. We found that the microenvironment of IBC is characterized by high infiltration of tumor associated macrophages (TAMs) and by over-expression of the cysteine protease cathepsin B (CTSB). TAMs in IBC secrete high levels of the cytokines interleukin-8 (IL-8) and monocyte chemoattractant protein-1 (MCP-1/CCL2) compared to non-IBC patients. Herein, we tested the roles of IL-8 and MCP-1/CCL2 in modulating proteolytic activity and invasiveness of TN-non-IBC as compared to TN-IBC and addressed the underlying molecular mechanism(s) for both cytokines. Quantitative real time PCR results showed that IL-8 and MCP-1/CCL2 were significantly overexpressed in tissues of TN-IBCs. IL-8 and MCP-1/CCL2 induced CTSB expression and activity of the p-Src and p-Erk1/2 signaling pathways relevant for invasion and metastasis in TN-non-IBC, HCC70 cells and TN-IBC, SUM149 cells. Dasatinib, an inhibitor of p-Src, and U0126, an inhibitor of p-Erk1/2, down-regulated invasion and expression of CTSB by HCC70 and SUM149 cells, a mechanism that is reversed by IL-8 and MCP-1/CCL2. Our study shows that targeting the cytokines IL-8 and MCP-1/CCL2 and associated signaling molecules may represent a promising therapeutic strategy in TN-IBC patients.


Assuntos
Quimiocina CCL2/biossíntese , Genes src/fisiologia , Neoplasias Inflamatórias Mamárias/metabolismo , Interleucina-8/biossíntese , Sistema de Sinalização das MAP Quinases/fisiologia , Neoplasias de Mama Triplo Negativas/metabolismo , Adulto , Idoso , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Dasatinibe/farmacologia , Feminino , Genes src/efeitos dos fármacos , Humanos , Neoplasias Inflamatórias Mamárias/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Pessoa de Meia-Idade , Proteólise/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/patologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/fisiologia
2.
J Adv Res ; 7(5): 661-70, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27482469

RESUMO

Hormonal-receptor positive (HRP) breast cancer patients with positive metastatic axillary lymph nodes are characterized by poor prognosis and increased mortality rate. The mechanisms by which cancer cells invade lymph nodes have not yet been fully explored. Several studies have shown that expression of IL-6 and the proteolytic enzyme cathepsin B (CTSB) was associated with breast cancer poor prognosis. In the present study, the effect of different concentrations of recombinant human IL-6 on the invasiveness capacity of HRP breast cancer cell line MCF-7 was tested using an in vitro invasion chamber assay. The impact of IL-6 on expression and activity of CTSB was also investigated. IL-6 treatment promoted the invasiveness potential of MCF-7 cells in a dose-dependent manner. Furthermore, MCF-7 cells displayed elevated CTSB expression and activity associated with loss of E-cadherin and upregulation of vimentin protein levels upon IL-6 stimulation. To validate these results in vivo, the level of expression of IL-6 and CTSB in the carcinoma tissues of HRP-breast cancer patients with positive and negative axillary metastatic lymph nodes (pLNs and nLNs) was assessed. Western blot and immunohistochemical staining data showed that expression of IL-6 and CTSB was higher in carcinoma tissues in HRP-breast cancer with pLNs than those with nLNs patients. ELISA results showed carcinoma tissues of HRP-breast cancer with pLNs exhibited significantly elevated IL-6 protein levels by approximately 2.8-fold compared with those with nLNs patients (P < 0.05). Interestingly, a significantly positive correlation between IL-6 and CTSB expression was detected in clinical samples of HRP-breast cancer patients with pLNs (r = 0.78, P < 0.01). Collectively, this study suggests that IL-6-induced CTSB may play a role in lymph node metastasis, and that may possess future therapeutic implications for HRP-breast cancer patients with pLNs. Further studies are necessary to fully identify IL-6/CTSB axis in different molecular subtypes of breast cancer.

4.
Tumour Biol ; 37(9): 12441-12453, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27329104

RESUMO

Epithelial-mesenchymal transition (EMT) is an essential process in breast cancer metastasis. The aim of the present study was to determine the role of secretions of tumor-associated leukocytes (TALs) isolated from negative and positive lymph nodes (nLNs and pLNs, respectively) breast cancer patients in regulating EMT mechanism and the associated signaling pathways. We found an increased infiltration of TALs, which was associated with downregulation of E-cadherin and over-expression of vimentin in the breast carcinoma tissues of pLNs as compared to nLNs patients and normal breast tissues obtained from healthy volunteers during mammoplasty. Furthermore, TALs isolated from pLNs breast cancer patients secreted an elevated panel of cytokines by up to 2-5-fold when compared with those isolated from nLNs patients. Secretome of TALs of pLNs possessed higher TARC, IGF-1, IL-3, TNF-ß, IL-5, G-CSF, IL-4, and IL-1α with more than a fivefold compared to those of nLNs. Using the human breast cancer cell lines MCF-7 and MDA-MB-231, we found that cytokines secreted by TALs isolated from nLNs and pLNs breast cancer patients promoted EMT via upregulation of TGF-ß and vimentin and downregulation of E-cadherin at messenger RNA (mRNA) levels in both cell lines and at protein level in MCF-7. While TGF-ß is over-expressed by MDA-MB-231 seeded in media conditioned by secretome of TALs isolated from nLNs and pLNs breast cancer patients. The downstream TGF-ß signaling transcription factors, Snail, Slug, and Twist, known to be associated with EMT mechanism were over-expressed by MCF-7 and MDA-MB-231 seeded in media conditioned by secretome of TALs isolated from nLNs and pLNs breast cancer patients. Acquisition of EMT in MCF-7 cells is mechanistically attributed to the activation of EGFR(Tyr845) and NF-κB/p65(Ser276) signaling which are significantly highly expressed by MCF-7 cells seeded in media conditioned by secretome of TALs isolated from pLNs compared to nLNs patients. Overall, this study provides implications of secretome of TALs and activated EGFR(Tyr845) and NF-κB/p65(Ser276) in EMT process that may be considered a therapeutic strategy to inhibit lymph node metastasis in breast cancer patients.


Assuntos
Neoplasias da Mama/patologia , Transição Epitelial-Mesenquimal , Receptores ErbB/fisiologia , Leucócitos/metabolismo , Transdução de Sinais/fisiologia , Fator de Transcrição RelA/fisiologia , Adulto , Idoso , Linhagem Celular Tumoral , Feminino , Humanos , Metástase Linfática , Pessoa de Meia-Idade , Fator de Crescimento Transformador beta/fisiologia , Microambiente Tumoral
5.
FEBS J ; 282(2): 271-82, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25327843

RESUMO

Tumor metastasis to lymph nodes is most deadly complication among breast cancer patients. Herein, we investigated the molecular mechanism by which tumor-associated leukocytes (TALs) mediate lymph node metastasis. The density of different leukocyte subtypes infiltrating the tumor microenvironment of negative and positive lymph nodes (nLNs, pLNs) in breast cancer patients was measured using immunohistochemistry. In addition, we isolated TALs from blood drained from the axillary tributaries of nLN and pLN patients during breast surgery. Secretions of TALs were subjected to cytokine profiling using a cytokine antibody array. Our results showed an increase in the number of infiltrated CD45+ cells in the carcinoma tissues of pLN patients with the major proportion being myeloid subsets compared with nLN patients. Furthermore, TALs of pLN patients show a significant fivefold increase in the secretion of interleukin (IL)-1α, interferon-γ, IL-5, IL-3 and tumor necrosis factor-ß, and are characterized by enhanced constitutive NF-κB/p65 signaling compared with TALs isolated from nLN patients. Using an invasion assay, cytokines secreted by TALs of pLN patients were shown to augment the invasive phenotype of breast cancer MCF-7 and SKBR3 cells compared with nLN patients. Using flow cytometry, we found that C-C chemokine receptor 7 (CCR7) is significantly overexpressed in breast carcinoma of pLN patients compared with nLNs patients. Intriguingly, CCR7, a mechanistic clue for metastasis, is upregulated in MCF-7 cells upon stimulation with TAL-conditioned media of pLN patients. Our findings show that the molecular cues secreted by TALs alone or in combination with CCR7 may emerge as future therapeutic targets for lymph node metastasis in breast cancer patients.


Assuntos
Neoplasias da Mama/genética , Leucócitos/metabolismo , NF-kappa B/genética , Receptores CCR7/biossíntese , Idoso , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Feminino , Citometria de Fluxo , Humanos , Antígenos Comuns de Leucócito/metabolismo , Linfonodos/imunologia , Linfonodos/metabolismo , Células MCF-7 , Pessoa de Meia-Idade , NF-kappa B/metabolismo , Metástase Neoplásica/genética , Receptores CCR7/genética , Microambiente Tumoral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...