Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
1.
Parasitology ; 151(1): 24-44, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37953070

RESUMO

Hemiurid digeneans conspecific with Stomachicola muraenesocis Yamaguti, 1934 (the type species of the genus Stomachicola Yamaguti, 1934) were collected from the stomach of the daggertooth pike conger Muraenesox cinereus (Forsskål) off the Persian Gulf of Iran. This study aimed to provide a detailed characterization of Stom. muraenesocis, including measurements, illustrations and scanning electron microscopy (s.e.m.) representations. Comparisons with the original and previous descriptions revealed morphological and metrical variations in several features (i.e. body size and shape, arrangement of reproductive organs, soma to ecsoma length ratio, position of genital opening, number of vitelline tubules and extension of uterine coils) between Stom. muraenesocis from different hosts and localities. This study presents the first molecular sequence data associated with the small (18S) and large (28S) subunit nuclear ribosomal RNA genes (rDNA) for Stom. muraenesocis. Phylogenetic analyses of the 18S dataset placed Stom. muraenesocis as sister lineage to a clade formed of a group of species of Lecithaster Lühe, 1901 (Lecithasteridae Odhner, 1905). In contrast, phylogenetic analyses based on the 28S consistently recovered a sister relationship between Stom. muraenesocis and representatives of the Hemiuridae Looss, 1899. Further comprehensive phylogenetically based classification in light of morphology and taxonomic history of the Hemiuridae and Lecithasteridae is required to infer phylogenetic affinities and historical biogeography of Stomachicola. A comprehensive list of previously reported species of Stomachicola together with their associated hosts, localities and morphometric data is provided.


Assuntos
Esocidae , Trematódeos , Animais , Esocidae/genética , Filogenia , Peixes , Dados de Sequência Molecular , DNA Ribossômico/genética , RNA Ribossômico 28S/genética
2.
Int J Mol Sci ; 24(24)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38139218

RESUMO

Salmonids are affected by the economically significant whirling disease (WD) caused by the myxozoan parasite Myxobolus cerebralis. In the past, it was endemic to Eurasia, but it has now spread to different regions of North America, Europe, New Zealand, and South Africa. Among salmonids, rainbow trout is considered the most highly susceptible host. Upon entering to the host's body, the parasite invades the spine and cranium, resulting in whirling behaviour, a blackened tail, and destruction of cartilage. The disease is characterized by the infiltration of numerous inflammatory cells, primarily lymphocytes and macrophages, with the onset of fibrous tissue infiltration. Several efforts have been undertaken to investigate the role of various immune modulatory molecules and immune regulatory genes using advanced molecular methods including flow cytometry and transcriptional techniques. Investigation of the molecular and cellular responses, the role of STAT3 in Th17 cell differentiation, and the inhibitory actions of suppressors of cytokine signaling (SOCS) on interferons and interleukins, as well as the role of natural resistance-associated macrophage proteins (Nramp) in WD have significantly contributed to our understanding of the immune regulation mechanism in salmonids against M. cerebralis. This review thoroughly highlights previous research and discusses potential future directions for understanding the molecular immune response of salmonids and the possible development of prophylactic approaches against WD.


Assuntos
Doenças Transmissíveis , Doenças dos Peixes , Myxobolus , Myxozoa , Oncorhynchus mykiss , Parasitos , Doenças Parasitárias em Animais , Animais , Myxobolus/genética , Imunidade
3.
Front Vet Sci ; 10: 1183246, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37745213

RESUMO

The aim of this study was to investigate the physiological response of rainbow trout (Oncorhynchus mykiss) before slaughtering in the last phase of farming analyzing skin mucus and plasma. Two groups of rainbow trout were considered: Group UN ("unstressed"), represented by fish randomly captured from raceways, in the last phase of a standard fattening cycle; Group S ("stressed"), collected at the end of the pre-slaughtering tank, soon after slaughtering. The fish skin mucus was swabbed from head to tail using a sterile plastic spatula and the blood was collected through an endocardial puncture. qRT-PCR was used to study the gene expression in skin mucus. The mRNA expression levels of the IL-6 and IgD genes were higher in the S than in the Group UN. The plasma analysis showed an only a decrease in the glucose plasma levels in the Group S when compared to the Group UN. The present results indicated that the procedures adopted after slaughtering only affected changes in plasma glucose and skin mucus activity in rainbow trout suggesting that management protocol was compatible with non-stressful farming conditions.

4.
Viruses ; 15(8)2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37632031

RESUMO

The efficacy of silver nanoparticles (AgNPs) was tested in vitro against three different fish viruses, causing significant economic damage in aquaculture. These viruses were the spring viraemia of carp virus (SVCV), European catfish virus (ECV), and Ictalurid herpesvirus 2 (IcHV-2). The safe concentration of AgNPs that did not cause cytotoxic effects in EPC cells proved to be 25 ng/mL. This dose of AgNPs decreased significantly (5-330×) the viral load of all three viruses in three different types of treatments (virus pre-treatment, cell pre-treatment, and cell post-treatment with the AgNPs). In a higher concentration, the AgNPs proved to be efficient against ECV and IcHV-2 even in a delayed post-cell-treatment experiment (AgNP treatment was applied 24 h after the virus inoculation). These first in vitro results against three devastating fish viruses are encouraging to continue the study of the applicability of AgNPs in aquaculture in the future.


Assuntos
Peixes-Gato , Ictalurivirus , Nanopartículas Metálicas , Animais , Antivirais/farmacologia , Prata/farmacologia
5.
Parasit Vectors ; 16(1): 182, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37277780

RESUMO

BACKGROUND: The genus Huffmanela Moravec, 1987 (Nematoda, Trichosomoididae, Huffmanelinae), represents a group of nematodes that infect both marine and freshwater fish, and the main gross feature of infection with different species of the genus is the presence of noticeable dark spots or tracks within the parasitized tissues. The purpose of this study was to describe morphologically and morphometrically the eggs of a new marine species of Huffmanela (Huffmanela persica sp. nov.), which was found in the form of black spots in the ovary and the tunica serosa of the stomach of the daggertooth pike conger (Muraenesox cinereus). The new species differs from Huffmanela hamo, another species reported from musculature of this host in Japan, in egg metrics, eggshell features and targeted organ. Molecular identification and pathological examination of the lesions caused by the new species are also reported. METHODS: Nematode eggs with varying degrees of development were separated from the infected tissues (ovary and tunica serosa of stomach) and investigated using light and scanning electron microscopy. Different species-specific markers (small subunit ribosomal DNA, 18S; large subunit ribosomal DNA, 28S; internal transcribed spacer, ITS) were used for molecular identification and phylogenetic study of the new species. Infected tissues were fixed in buffered formalin for pathological investigations. RESULTS: The fully developed eggs of H. persica sp. nov. are distinguished from those previously described from this host on the basis of their measurements (size, 54-68 × 31-43 µm; polar plugs, 6.4-9.7 × 8.4-12 µm; shell thickness, 3.5-6.1 µm) and a delicate but ornate uterine layer (UL) covering the entire eggshell including the polar plugs. Histopathological examination revealed a fibro-granulomatous inflammation in the ovary and the serosal layer of the stomach of infected fish. Maximum-likelihood (ML) phylogenetic analysis recovered a sister relationship between the new species of marine origin and Huffmanela species previously collected from freshwater hosts. CONCLUSIONS: The present study is the first to report the molecular characterization and phylogenetic position of a teleost-associated marine species of the genus Huffmanela. A comprehensive list of nominal and innominate populations of Huffmanela is also provided.


Assuntos
Doenças dos Peixes , Nematoides , Animais , Feminino , Esocidae , Filogenia , Peixes , Enguias
6.
Vet Res ; 54(1): 51, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37365650

RESUMO

Tetracapsuloides bryosalmonae is a malacosporean endoparasite that infects a wide range of salmonids and causes proliferative kidney disease (PKD). Brown trout serves as a carrier host whereas rainbow trout represents a dead-end host. We thus asked if the parasite adapts to the different hosts by changing molecular mechanisms. We used fluorescent activated cell sorting (FACS) to isolate parasites from the kidney of brown trout and rainbow trout following experimental infection with T. bryosalmonae. The sorted parasite cells were then subjected to RNA sequencing. By this approach, we identified 1120 parasite transcripts that were expressed differentially in parasites derived from brown trout and rainbow trout. We found elevated levels of transcripts related to cytoskeleton organisation, cell polarity, peptidyl-serine phosphorylation in parasites sorted from brown trout. In contrast, transcripts related to translation, ribonucleoprotein complex biogenesis and subunit organisation, non-membrane bounded organelle assembly, regulation of protein catabolic process and protein refolding were upregulated in rainbow trout-derived parasites. These findings show distinct molecular adaptations of parasites, which may underlie their distinct outcomes in the two hosts. Moreover, the identification of these differentially expressed transcripts may enable the identification of novel drug targets that may be exploited as treatment against T. bryosalmonae. We here also describe for the first time how FACS based isolation of T. bryosalmonae cells from infected kidney of fish fosters research and allows to define differentially expressed parasite transcripts in carrier and dead-end fish hosts.


Assuntos
Fenômenos Biológicos , Cnidários , Doenças dos Peixes , Nefropatias , Myxozoa , Oncorhynchus mykiss , Doenças Parasitárias em Animais , Animais , Nefropatias/parasitologia , Nefropatias/veterinária , Myxozoa/genética , Análise de Sequência de RNA/veterinária , Doenças dos Peixes/parasitologia , Doenças Parasitárias em Animais/parasitologia
7.
Animals (Basel) ; 13(7)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37048506

RESUMO

Gene editing and gene silencing techniques have the potential to revolutionize our knowledge of biology and diseases of fish and other aquatic animals. By using such techniques, it is feasible to change the phenotype and modify cells, tissues and organs of animals in order to cure abnormalities and dysfunctions in the organisms. Gene editing is currently experimental in wide fields of aquaculture, including growth, controlled reproduction, sterility and disease resistance. Zink finger nucleases, TALENs and CRISPR/Cas9 targeted cleavage of the DNA induce favorable changes to site-specific locations. Moreover, gene silencing can be used to inhibit the translation of RNA, namely, to regulate gene expression. This methodology is widely used by researchers to investigate genes involved in different disorders. It is a promising tool in biotechnology and in medicine for investigating gene function and diseases. The production of food fish has increased markedly, making fish and seafood globally more popular. Consequently, the incidence of associated problems and disease outbreaks has also increased. A greater investment in new technologies is therefore needed to overcome such problems in this industry. To put it concisely, the modification of genomic DNA and gene silencing can comprehensively influence aquatic animal medicine in the future. On the ethical side, these precise genetic modifications make it more complicated to recognize genetically modified organisms in nature and can cause several side effects through created mutations. The aim of this review is to summarize the current state of applications of gene modifications and genome editing in fish medicine.

8.
BMC Vet Res ; 19(1): 62, 2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36932404

RESUMO

BACKGROUND: Recently, an increasing number of ichthyophthiriasis outbreaks has been reported, leading to high economic losses in fisheries and aquaculture. Although several strategies, including chemotherapeutics and immunoprophylaxis, have been implemented to control the parasite, no effective method is available. Hence, it is crucial to discover novel drug targets and vaccine candidates against Ichthyophthirius multifiliis. For this reason, understanding the parasite stage biology, host-pathogen interactions, molecular factors, regulation of major aspects during the invasion, and signaling pathways of the parasite can promote further prospects for disease management. Unfortunately, functional studies have been hampered in this ciliate due to the lack of robust methods for efficient nucleic acid delivery and genetic manipulation. In the current study, we used antisense technology to investigate the effects of targeted gene knockdown on the development and infectivity of I. multifiliis. Antisense oligonucleotides (ASOs) and their gold nanoconjugates were used to silence the heat shock protein 90 (hsp90) of I. multifiliis. Parasite stages were monitored for motility and development. In addition, the ability of the treated parasites to infect fish and cause disease was evaluated. RESULTS: We demonstrated that ASOs were rapidly internalized by I. multifiliis and distributed diffusely throughout the cytosol. Knocking down of I. multifiliis hsp90 dramatically limited the growth and development of the parasite. In vivo exposure of common carp (Cyprinus carpio) showed reduced infectivity of ASO-treated theronts compared with the control group. No mortalities were recorded in the fish groups exposed to theronts pre-treated with ASOs compared with the 100% mortality observed in the non-treated control fish. CONCLUSION: This study presents a gene regulation approach for investigating gene function in I. multifiliis in vitro. In addition, we provide genetic evidence for the crucial role of hsp90 in the growth and development of the parasite, suggesting hsp90 as a novel therapeutic target for successful disease management. Further, this study introduces a useful tool and provides a significant contribution to the assessing and understanding of gene function in I. multifiliis.


Assuntos
Carpas , Infecções por Cilióforos , Doenças dos Peixes , Hymenostomatida , Animais , Doenças dos Peixes/parasitologia , Infecções por Cilióforos/veterinária , Infecções por Cilióforos/tratamento farmacológico , Infecções por Cilióforos/parasitologia , Hymenostomatida/fisiologia , Proteínas de Choque Térmico
9.
Front Cell Infect Microbiol ; 12: 1032347, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36389158

RESUMO

Tetracapsuloides bryosalmonae is a malacosporean endoparasite that causes proliferative kidney disease (PKD) in wild and farmed salmonids in Europe and North America. The life cycle of T. bryosalmonae completes between invertebrate bryozoan and vertebrate fish hosts. Inside the fish, virulence factors of T. bryosalmonae are induced during infection or interactions with host cells. T. bryosalmonae genes expressed in vivo are likely to be important in fish pathogenesis. Herein, we identify in vivo induced antigens of T. bryosalmonae during infection in brown trout (Salmo trutta) using in vivo induced antigen technology (IVIAT). Brown trout were exposed to the spores of T. bryosalmonae and were sampled at different time points. The pooled sera were first pre-adsorbed with antigens to remove false positive results. Subsequently, adsorbed sera were used to screen a T. bryosalmonae cDNA phage expression library. Immunoscreening analysis revealed 136 immunogenic T. bryosalmonae proteins induced in brown trout during parasite development. They are involved in signal transduction, transport, metabolism, ion-protein binding, protein folding, and also include hypothetical proteins, of so far unknown functions. The identified in vivo induced antigens will be useful in the understanding of T. bryosalmonae pathogenesis during infection in susceptible hosts. Some of the antigens found may have significant implications for the discovery of candidate molecules for the development of potential therapies and preventive measures against T. bryosalmonae in salmonids.


Assuntos
Cnidários , Doenças dos Peixes , Nefropatias , Myxozoa , Parasitos , Doenças Parasitárias em Animais , Animais , Myxozoa/genética , Truta/parasitologia , Tecnologia
10.
Microorganisms ; 10(11)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36363751

RESUMO

Vibrio species are widely distributed and can be potentially pathogenic to aquatic organisms. In this study, we isolated Vibrio spp. from environmental samples (seawater, sediment, and fish swabs) collected over a three-year period from a fish farm in Mali Ston Bay in the Adriatic Sea, Croatia, and assess their distribution. A total of 48 seawater samples and 12 sediment samples, as well as gill and skin swabs from 110 farmed European seabass, were analysed for the presence of Vibrio. Vibrio strains were identified to the species level by MALDI TOF MS. The analysis revealed that V. alginolyticus was the predominant species in European seabass, followed by V. anguillarum. V. alginolyticus was isolated from the sediments, along with V. gigantis and V. pomeroyi, while V. chagasii, V. cyclitrophicus, V. fortis, V. gigantis, V. harveyi, V. pelagius, and V. pomeroyi were isolated from seawater. V. anguillarum was isolated only twice during two different spring seasons, once from a diseased sea bass and the second time from a healthy sea bass. We analysed these two isolates and found that they differ both genetically and in terms of resistance to antibiotics. Our results confirm the seasonality of vibriosis incidence and the presence of the pathogenic V. anguillarum, which increases the risk of vibriosis.

11.
Mar Drugs ; 20(7)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35877718

RESUMO

Marine bio-sourced chitosan nanoparticles (CSNP) are antimicrobial and immunomodulatory agents beneficial for fish medicine. Herein, dietary CSNP was investigated for the amelioration of the systemic inflammatory responses of an induced fish model. One hundred and forty-four rainbow trout were assigned to one pathogen-free and non-supplemented group (negative control), and three challenged groups: non-supplemented (positive control), CSNP-preventive, and CSNP-therapeutic. After a feeding experiment extended for 21 days, the organosomatic indices (OSI) and molecular aspects were assessed. After a challenge experiment extended for further 28 days, CSNP-therapeutic intervention was assessed on fish survival and systemic inflammatory responses on pathology, histo-morphology, and molecular aspects. With CSNP administration, OSI nonsignificantly decreased and the relative expression of targeted inflammatory-mediator genes was significantly increased. The CSNP-therapeutic fish showed an RPS of 80% as compared to the positive control group, and CSNP-therapeutic administration retained the highest gene expression augmentation up to 28 days after the challenge. Notably, the splenic reticulin fibers framework of the CSNP-therapeutic group retained the highest integrity among the groups during the infection. After recovery, reticulin fibers density in the CSNP-therapeutic samples was significantly higher than in the negative control group, which indicates high innate immunity. Thus, CSNP showed promising biotherapeutic features enhancing fish resistance against infections.


Assuntos
Quitosana , Doenças dos Peixes , Nanopartículas , Oncorhynchus mykiss , Animais , Quitosana/farmacologia , Reticulina
12.
BMC Genomics ; 23(1): 446, 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35710345

RESUMO

BACKGROUND: The cnidarian myxozoan parasite Tetracapsuloides bryosalmonae causes chronic proliferative kidney disease (PKD) in salmonids. This parasite is a serious threat to wild and cultured salmonids. T. bryosalmonae undergoes intra-luminal sporogonic development in the kidney of brown trout (Salmo trutta) and the viable spores are released via urine. We investigated the alternative splicing pattern in the posterior kidney of brown trout during PKD. RESULTS: RNA-seq data were generated from the posterior kidney of brown trout collected at 12 weeks post-exposure to T. bryosalmonae. Subsequently, this data was mapped to the brown trout genome. About 153 significant differently expressed alternatively spliced (DEAS) genes, (delta PSI = 5%, FDR P-value < 0.05) were identified from 19,722 alternatively spliced events. Among the DEAS genes, the least and most abundant alternative splicing types were alternative 5' splice site (5.23%) and exon skipping (70.59%), respectively. The DEAS genes were significantly enriched for sodium-potassium transporter activity and ion homeostasis (ahcyl1, atp1a3a, atp1a1a.1, and atp1a1a.5). The protein-protein interaction network analysis enriched two local network clusters namely cation transporting ATPase C-terminus and Sodium/potassium ATPase beta chain cluster, and mixed inclusion of Ion homeostasis and EF-hand domain cluster. Furthermore, the human disease-related salmonella infection pathway was significantly enriched in the protein-protein interaction network. CONCLUSION: This study provides the first baseline information about alternative splicing in brown trout during PKD. The generated data lay a foundation for further functional molecular studies in PKD - brown trout infection model. The information generated from the present study can help to develop therapeutic strategies for PKD in the future.


Assuntos
Doenças dos Peixes , Nefropatias , Myxozoa , Doenças Parasitárias em Animais , Salmonidae , Adenosina Trifosfatases/metabolismo , Processamento Alternativo , Animais , Doenças dos Peixes/parasitologia , Rim/metabolismo , Nefropatias/genética , Nefropatias/metabolismo , Nefropatias/veterinária , Myxozoa/genética , Doenças Parasitárias em Animais/genética , Doenças Parasitárias em Animais/parasitologia , Potássio/metabolismo , Sódio/metabolismo , Truta/genética , Truta/parasitologia
13.
Pathogens ; 11(3)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35335627

RESUMO

Myxosporeans are well-known parasites infecting food fishes in fresh and marine water around the globe. Grass carp (Ctenopharyngodon idella), a freshwater food fish commonly cultured in India with has significant economic importance. Herein, the study focuses on the description of a new myxosporean species, Myxobolus grassi sp. nov. from the gills as primary site and liver as secondary site of infection in grass carp. Both organs (gill and liver) were infected concurrently in the host and the prevalence of grass carp infection was 4.05% in gill filaments and liver, respectively. Identification of species was based on the morphological and morphometric features of the myxospore as well as 18S rDNA sequence data. A smear from gill and liver exhibited hundreds of morphologically similar myxospores. BLAST search revealed 98% sequence similarity and 0.03 genetic distance with M. catlae (KM029967) infecting gill lamellae of mrigal carp (Cirrhinus cirrhosus) from India and 98-84% sequence similarity with other myxobolids in India, China, Japan, Malaysia, Turkey and Hungary. Phylogenetically, it clustered with other myxobolids infecting gills and related organs (i.e., vital organ) of Indian cyprinid carp species. On the basis of myxospore morphology and 18S sequence, we propose M. grassi sp. nov.

14.
Biology (Basel) ; 10(12)2021 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-34943159

RESUMO

Tetracapsuloides bryosalmonae, a myxozoan endoparasite often causes chronic infection in brown trout. Antiparasite immunity mediated by antibodies and B cells is known as an important determinant of host survival and parasite proliferation during chronic infections. Accordingly, studying their time course during proliferative kidney disease (PKD) might be helpful in improving our understanding of its chronic nature. Therefore, we conducted this study to examine parasite specific serum antibody and B-cell-mediated response in laboratory-infected brown trout at different time points. Brown trout were exposed to the spores of T. bryosalmonae, derived from infected bryozoans. Samples were collected at different time points and processed for indirect ELISA, histopathology, and qRT-PCR. T. bryosalmonae specific antibody was detected at 4 weeks post exposure (wpe) and it persisted until 17 wpe. Additionally, the expressions of C4A, CD34, CD79A, BLNK, CD74, BCL7, and CD22 were differentially regulated in the important immune organs, kidney and spleen. To our knowledge, this is the first study addressing anti-T. bryosalmonae antibody response in brown trout at different time points. The results from this study provide valuable insights into the processes leading to changes in B cell development, inflammation and antibody production during the course of PKD in brown trout.

15.
Vet Res ; 52(1): 146, 2021 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-34924019

RESUMO

Gram-negative bacteria are known to subvert eukaryotic cell physiological mechanisms using a wide array of virulence factors, among which the type three-secretion system (T3SS) is often one of the most important. The T3SS constitutes a needle-like apparatus that the bacterium uses to inject a diverse set of effector proteins directly into the cytoplasm of the host cells where they can hamper the host cellular machinery for a variety of purposes. While the structure of the T3SS is somewhat conserved and well described, effector proteins are much more diverse and specific for each pathogen. The T3SS can remodel the cytoskeleton integrity to promote intracellular invasion, as well as silence specific eukaryotic cell signals, notably to hinder or elude the immune response and cause apoptosis. This is also the case in aquatic bacterial pathogens where the T3SS can often play a central role in the establishment of disease, although it remains understudied in several species of important fish pathogens, notably in Yersinia ruckeri. In the present review, we summarise what is known of the T3SS, with a special focus on aquatic pathogens and suggest some possible avenues for research including the potential to target the T3SS for the development of new anti-virulence drugs.


Assuntos
Organismos Aquáticos , Proteínas da Membrana Bacteriana Externa , Fenômenos Fisiológicos Bacterianos , Sistemas de Secreção Tipo III , Animais , Organismos Aquáticos/fisiologia , Proteínas da Membrana Bacteriana Externa/metabolismo , Doenças dos Peixes/microbiologia , Peixes/microbiologia , Dor/veterinária , Transporte Proteico , Sistemas de Secreção Tipo III/metabolismo , Fatores de Virulência/metabolismo
16.
Viruses ; 13(9)2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34578358

RESUMO

According to the 2018 FAO report on aquaculture, there are 598 species of finfish, molluscs, crustaceans, and other organisms used in aquafarming around the world [...].


Assuntos
Aquicultura , Vírus , Animais , Crustáceos/virologia , Peixes/virologia , Vírus da Necrose Pancreática Infecciosa , Moluscos/virologia , Rhabdoviridae , Salmão/virologia
17.
Viruses ; 13(7)2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34372583

RESUMO

The present study was intended to screen the wild crustaceans for co-infection with Infectious Hypodermal and Hematopoietic Necrosis Virus (IHHNV) and White Spot Syndrome Virus (WSSV) in Andaman and Nicobar Archipelago, India. We screened a total of 607 shrimp and 110 crab samples using a specific polymerase chain reaction, and out of them, 82 shrimps (13.5%) and 5 (4.5%) crabs were found positive for co-infection of IHHNV and WSSV. A higher rate of co-infection was observed in Penaeus monodon and Scylla serrata than other shrimp and crab species. The nucleotide sequences of IHHNV and WSSV obtained from crab in this present study exhibited very high sequence identity with their counterparts retrieved from various countries. Histopathological analysis of the infected shrimp gill sections further confirmed the eosinophilic intra-nuclear cowdry type A inclusion bodies and basophilic intra-nuclear inclusion bodies characteristics of IHHNV and WSSV infections, respectively. The present study serves as the first report on co-infection of WSSV and IHHNV in Andaman and Nicobar Archipelago, India and accentuates the critical need for continuous monitoring of wild crustaceans and appropriate biosecurity measures for brackishwater aquaculture.


Assuntos
Braquiúros/virologia , Coinfecção/epidemiologia , Penaeidae/virologia , Animais , Animais Selvagens/virologia , Aquicultura/métodos , Densovirinae/genética , Densovirinae/patogenicidade , Índia , Reação em Cadeia da Polimerase/métodos , Vírus da Síndrome da Mancha Branca 1/genética , Vírus da Síndrome da Mancha Branca 1/patogenicidade
19.
Pathogens ; 10(7)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206679

RESUMO

The skin mucus is the fish primary defense barrier protecting from infections via the skin epidermis. In a previous study, we have investigated the proteome of common carp (Cyprinus carpio) skin mucus at two different time points (1 and 9 days) post-exposure to Ichthyophthirius multifiliis. Applying a nano-LC ESI MS/MS technique, we have earlier revealed that the abundance of 44 skin mucus proteins has been differentially regulated including proteins associated with host immune responses and wound healing. Herein, in skin mucus samples, we identified six proteins of I. multifiliis associated with the skin mucus in common carp. Alpha and beta tubulins were detected in addition to the elongation factor alpha, 26S proteasome regulatory subunit, 26S protease regulatory subunit 6B, and heat shock protein 90. The identified proteins are likely involved in motility, virulence, and general stress during parasite growth and development after parasite attachment and invasion. Two KEGG pathways, phagosome and proteasome, were identified among these parasite proteins, mirroring the proteolytic and phagocytic activities of this parasite during host invasion, growth, and development, which represent a plausible host invasion strategy of this parasite. The results obtained from this study can support revealing molecular aspects of the interplay between carp and I. multifiliis and may help us understand the I. multifiliis invasion strategy at the skin mucus barrier. The data may advance the development of novel drugs, vaccines, and diagnostics suitable for the management and prevention of ichthyophthiriosis in fish.

20.
Dis Aquat Organ ; 145: 63-77, 2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34137377

RESUMO

A sample of 30 thick-shelled river mussels Unio crassus Philipsson (Unionida: Unionidae) was collected from the River Sauer in Luxembourg to acquire data on parasitic infestations of the mussels. Among other parasites, different development stages of freshwater mites were collected from the gills and the mantle of the mussels and were documented with bright-field, stereo, and confocal laser scanning microscopy and microscopic X-ray computed tomography. The retrieved data allowed a morphological description of larvae and female adults of the mites and assigning them to the genus Unionicola Haldeman (Trombidiformes: Unionicolidae) and the subgenus Pentatax Thor. Additionally, adult stages and larvae were barcoded by sequencing a section of the mitochondrial COI and 18S rRNA genes. This resulted in 4 new, similar Unionicola lineages from the adult stages, which differ in at least 14.7% (uncorrected p distance) from those already published. Barcoding of larval DNA was not successful. The comparison with known European species of the genus Unionicola and analysis of the barcoding results allowed the proposal of a new species of the genus Unionicola. The species was named Unionicola sauerensis sp. nov. after the River Sauer in Luxembourg, where the infested mussels were collected.


Assuntos
Bivalves , Ácaros , Unio , Animais , Feminino , Água Doce , Rios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...