Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Commun ; 4(5): fcac237, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246046

RESUMO

Carpal tunnel syndrome is the most common entrapment neuropathy and is associated with altered brain function and structure. However, little is understood of the central mechanisms associated with its pain, symptom presentation, and treatment-related resolution. This longitudinal study evaluated carpal tunnel syndrome-related alterations in brain network communication and relationships to behavioural signs of central sensitization before and after carpal tunnel release surgery. We tested the hypothesis that carpal tunnel syndrome is associated with condition- and treatment-related plasticity in brain regions involved in somatosensation. We used quantitative sensory testing and clinical and pain questionnaires to assess sensory and pain function in 25 patients with carpal tunnel syndrome before (18 women, 7 men) and after (n = 16) surgery, and 25 sex- and age-matched healthy controls. We also acquired resting-state functional MRI to determine functional connectivity of two key nodes in the somatosensory system, the thalamus and primary somatosensory cortex. Seed-to-whole brain resting-state static functional connectivity analyses revealed abnormally low functional connectivity for the hand area of the primary somatosensory cortex with the contralateral somatosensory association cortex (supramarginal gyrus) before surgery (P < 0.01). After clinically effective surgery: (i) Primary somatosensory functional connectivity was normalized with the contralateral somatosensory association cortex and reduced with the dorsolateral prefrontal cortex (a region associated with cognitive and emotional modulation of pain) and primary visual areas (P < 0.001) from pre-op levels; and (ii) Functional connectivity of the thalamus with the primary somatosensory and motor cortices was attenuated from pre-op levels (P < 0.001) but did not correlate with temporal summation of pain (a behavioural measure of central sensitization) or clinical measures. This study is the first to reveal treatment-related neuroplasticity in resting-state functional connectivity of the somatosensory system in carpal tunnel syndrome. The findings of dysfunctional resting-state functional connectivity point to aberrant neural synchrony between the brain's representation of the hand with regions involved in processing and integrating tactile and nociceptive stimuli and proprioception in carpal tunnel syndrome. Aberrant neural communication between the primary somatosensory hand area and the dorsolateral prefrontal cortex could reflect increased attention to pain, paraesthesia, and altered sensation in the hand. Finally, reduced thalamocortical functional connectivity after surgery may reflect central plasticity in response to the resolution of abnormal sensory signals from the periphery. Our findings support the concept of underlying brain contributions to this peripheral neuropathy, specifically aberrant thalamocortical and corticocortical communication, and point to potential central therapeutic targets to complement peripheral treatments.

2.
Commun Biol ; 5(1): 1000, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36131088

RESUMO

Neuronal populations in the brain are engaged in a temporally coordinated manner at rest. Here we show that spontaneous transitions between large-scale resting-state networks are altered in chronic neuropathic pain. We applied an approach based on the Hidden Markov Model to magnetoencephalography data to describe how the brain moves from one activity state to another. This identified 12 fast transient (~80 ms) brain states including the sensorimotor, ascending nociceptive pathway, salience, visual, and default mode networks. Compared to healthy controls, we found that people with neuropathic pain exhibited abnormal alpha power in the right ascending nociceptive pathway state, but higher power and coherence in the sensorimotor network state in the beta band, and shorter time intervals between visits of the sensorimotor network, indicating more active time in this state. Conversely, the neuropathic pain group showed lower coherence and spent less time in the frontal attentional state. Therefore, this study reveals a temporal imbalance and dysregulation of spectral frequency-specific brain microstates in patients with neuropathic pain. These findings can potentially impact the development of a mechanism-based therapeutic approach by identifying brain targets to stimulate using neuromodulation to modify abnormal activity and to restore effective neuronal synchrony between brain states.


Assuntos
Magnetoencefalografia , Neuralgia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Mapeamento Encefálico , Humanos , Imageamento por Ressonância Magnética
3.
Pain ; 163(7): 1291-1302, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34711764

RESUMO

ABSTRACT: Alpha oscillatory activity (8-13 Hz) is the dominant rhythm in the awake brain and is known to play an important role in pain states. Previous studies have identified alpha band slowing and increased power in the dynamic pain connectome (DPC) of people with chronic neuropathic pain. However, a link between alpha-band abnormalities and sex differences in brain organization in healthy individuals and those with chronic pain is not known. Here, we used resting-state magnetoencephalography to test the hypothesis that peak alpha frequency (PAF) abnormalities are general features across chronic central and peripheral conditions causing neuropathic pain but exhibit sex-specific differences in networks of the DPC (ascending nociceptive pathway [ANP], default mode network, salience network [SN], and subgenual anterior cingulate cortex). We found that neuropathic pain (N = 25 men and 25 women) was associated with increased PAF power in the DPC compared with 50 age- and sex-matched healthy controls, whereas slower PAF in nodes of the SN (temporoparietal junction) and the ANP (posterior insula) was associated with higher trait pain intensity. In the neuropathic pain group, women exhibited lower PAF power in the subgenual anterior cingulate cortex and faster PAF in the ANP and SN than men. The within-sex analyses indicated that women had neuropathic pain-related increased PAF power in the ANP, SN, and default mode network, whereas men with neuropathic pain had increased PAF power restricted to the ANP. These findings highlight neuropathic pain-related and sex-specific abnormalities in alpha oscillations across the DPC that could underlie aberrant neuronal communication in nociceptive processing and modulation.


Assuntos
Neuralgia , Caracteres Sexuais , Feminino , Humanos , Masculino , Ritmo alfa , Encéfalo/metabolismo , Imageamento por Ressonância Magnética , Neuralgia/diagnóstico por imagem , Preparações Farmacêuticas
4.
Front Pain Res (Lausanne) ; 2: 673538, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35295450

RESUMO

The subgenual anterior cingulate cortex (sgACC) is a key node of the descending antinociceptive system with sex differences in its functional connectivity (FC). We previously reported that, in a male-prevalent chronic pain condition, sgACC FC is abnormal in women but not in men. This raises the possibility that, within a sex, sgACC FC may be either protective or represent a vulnerability to develop a sex-dominant chronic pain condition. The aim of this study was to characterize sgACC FC in a female-dominant chronic pain condition, carpal tunnel syndrome (CTS), to investigate whether sgACC abnormalities are a common feature in women with chronic pain or unique to individuals with pain conditions that are more prevalent in the opposite sex. We used fMRI to determine the resting state FC of the sgACC in healthy controls (HCs, n = 25, 18 women; 7 men) and people with CTS before (n = 25, 18 women; 7 men) and after (n = 17, 13 women; 4 men) successful surgical treatment. We found reduced sgACC FC with the medial pre-frontal cortex (mPFC) and temporal lobe in CTS compared with HCs. The group-level sgACC-mPFC FC abnormality was driven by men with CTS, while women with CTS did not have sgACC FC abnormalities compared with healthy women. We also found that age and sex influenced sgACC FC in both CTS and HCs, with women showing greater FC with bilateral frontal poles and men showing greater FC with the parietal operculum. After surgery, there was reduced sgACC FC with the orbitofrontal cortex, striatum, and premotor areas and increased FC with the posterior insula and precuneus compared with pre-op scans. Abnormally reduced sgACC-mPFC FC in men but not women with a female-prevalent chronic pain condition suggests pain-related sgACC abnormalities may not be specific to women but rather to individuals who develop chronic pain conditions that are more dominant in the opposite sex. Our data suggest the sgACC plays a role in chronic pain in a sex-specific manner, and its communication with other regions of the dynamic pain connectome undergoes plasticity following pain-relieving treatment, supporting it as a potential therapeutic target for neuromodulation in chronic pain.

5.
Front Pain Res (Lausanne) ; 2: 784362, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35295516

RESUMO

Conditioned pain modulation (CPM) is a physiological measure thought to reflect an individual's endogenous pain modulation system. CPM varies across individuals and provides insight into chronic pain pathophysiology. There is growing evidence that CPM may help predict individual pain treatment outcome. However, paradigm variabilities and practical issues have impeded widespread clinical adoption of CPM assessment. This study aimed to compare two CPM paradigms in people with chronic pain and healthy individuals. A total of 30 individuals (12 chronic pain, 18 healthy) underwent two CPM paradigms. The heat CPM paradigm acquired pain intensity ratings evoked by a test stimulus (TS) applied before and during the conditioning stimulus (CS). The pressure CPM paradigm acquired continuous pain intensity ratings of a gradually increasing TS, before and during CS. Pain intensity was rated from 0 (no pain) to 100 (worst pain imaginable); Pain50 is the stimulus level for a response rated 50. Heat and pressure CPM were calculated as a change in TS pain intensity ratings at Pain50, where negative CPM scores indicate pain inhibition. We also determined CPM in the pressure paradigm as change in pressure pain detection threshold (PDT). We found that in healthy individuals the CPM effect was significantly more inhibitory using the pressure paradigm than the heat paradigm. The pressure CPM effect was also significantly more inhibitory when based on changes at Pain50 than at PDT. However, in individuals with chronic pain there was no significant difference in pressure CPM compared to heat or PDT CPM. There was no significant correlation between clinical pain measures (painDETECT and Brief Pain Inventory) and paradigm type (heat vs. pressure), although heat-based CPM and painDETECT scores showed a trend. Importantly, the pressure paradigm could be administered in less time than the heat paradigm. Thus, our study indicates that in healthy individuals, interpretation of CPM findings should consider potential modality-dependent effects. However, in individuals with chronic pain, either heat or pressure paradigms can similarly be used to assess CPM. Given the practical advantages of the pressure paradigm (e.g., short test time, ease of use), we propose this approach to be well-suited for clinical adoption.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...