Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 2886, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38311611

RESUMO

Increasing attention has been given to mango (Mangifera indica) fruits owing to their characteristic taste, and rich nutritional value. Mango kernels are typically discarded as a major waste product in mango industry, though of potential economic value. The present study aims to outline the first comparison of different mango kernel cvs. originated from different localities alongside Egypt, e.g., Sharqia, Suez, Ismailia, and Giza. Gas chromatography-mass spectroscopy (GC-MS) post silylation analysis revealed that sugars were the major class being detected at 3.5-290.9 µg/mg, with some kernels originating from Sharqia province being the richest amongst other cvs. In consistency with sugar results, sugar alcohols predominated in Sharqia cvs. at 1.3-38.1 µg/mg represented by ribitol, iditol, pinitol, and myo-inositol. No major variation was observed in the fatty acids profile either based on cv. type or localities, with butyl caprylate as a major component in most cvs. identified for the first time in mango. Regarding phenolics, Sedeeq cv. represented the highest level at 18.3 µg/mg and showing distinct variation among cvs. posing phenolics as better classification markers than sugars. Multivariate data analyses (MVA) confirmed that the premium cvs "Aweis and Fons" were less enriched in sugars, i.e., fructose, talose, and glucose compared to the other cvs. Moreover, MVA of Zabdeya cv. collected from three localities revealed clear segregation to be chemically distinct. Sharqia originated mango kernels were rich in sugars (e.g., glucose and fructose), whilst sarcosine esters predominated in other origins.


Assuntos
Mangifera , Cromatografia Gasosa-Espectrometria de Massas , Mangifera/química , Egito , Resíduos/análise , Frutas/química , Açúcares/metabolismo , Glucose/metabolismo , Frutose/metabolismo
2.
RSC Adv ; 13(45): 31795-31810, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37908649

RESUMO

Bovine tuberculosis (bTB) is considered a worldwide infectious zoonotic disease. Mycobacterium bovis causes bTB disease. It is one of the Mycobacterium tuberculosis complex (MTBC) members. MTBC is a clonal complex of close relatives with approximately 99.95% similarity. M. bovis is a spillover pathogen that can transmit from animals to humans and rarely from humans to animals with contact. Genotyping techniques are important to discriminate and differentiate between MTBC species. Spoligotyping and mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR) are widely used but they have some limitations. As an alternative, whole genome sequencing approaches have been utilized due to their high-resolution power. They are employed in typing M. bovis and explain the evolutionary and phylogenetic relationships between isolates. The control of bTB disease has attracted a large amount of attention. Rapid and proper diagnosis is necessary for monitoring the disease as an initial step for its control and treatment. Nanotechnology has a potential impact on the rapid diagnosis and treatment of bTB through the use of nanocarrier and metal nanoparticles (NPs). Special attention has been paid to voltammetric and impedimetric electrochemical strategies as facile, sensitive, and selective methods for the efficient detection of tuberculosis. The efficacy of these sensors is enhanced in the presence of NPs, which act as recognition and/or redox probes. Gold, silver, copper, cobalt, graphene, and magnetic NPs, as well as polypyrrole nanowires and multiwalled carbon nanotubes have been employed for detecting tuberculosis. Overall, NP-based electrochemical sensors represent a promising tool for the diagnosis of bTB.

3.
Crit Rev Biotechnol ; : 1-37, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37156550

RESUMO

Alkylresorcinols (ARs) are natural bioactive ingredients produced by: bacteria, fungi, sponges, and higher plants, possessing a lipophilic polyphenol structure with a myriad of biological properties. Focusing on the importance of ARs, several analogs can be extracted from different natural resources. Interestingly, the composition of ARs is usually reflective of their source, with structural differences to exist among ARs isolated from different natural sources. The identified compounds from marine are distinguished by sulfur atom and disulfide bond, while the alkyl chain of bacterial homologs are recognized for their saturated fatty acid chains. ARs occurrence in fungi is still poorly documented however most of the isolated fungal molecules are characterized by a sugar unit attached to their alkylated side chains. The biosynthetic pathway of ARs is postulated via a type III polyketide synthase in which the fatty-acyl chain is elongated and cyclized to generate ARs. The structure-activity relationship (SAR) has gained an increasing interest to mediate for ARs biological activities as discussed herein for the first time from their different resources. ARs extraction procedures showed much progress compared to classical methods compiling organic solvents with supercritical extraction appearing as a potential technique for producing highly purified food-grade of AR homologs. The current review also presents on the rapid qualitative and quantitative determination of ARs to increase accessibility for screening cereals as potential sources of these bioactives.

4.
ACS Omega ; 8(6): 5184-5196, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36816672

RESUMO

Enzymes play vital roles in diverse industrial sectors and are essential components of many industrial products. Immobilized enzymes possess higher resistance to environmental changes and can be recovered/recycled easily when compared to the free forms. The primary benefit of immobilization is protecting the enzymes from the harsh environmental conditions (e.g., elevated temperatures, extreme pH values, etc.). The immobilized enzymes can be utilized in various large-scale industries, e.g., medical, food, detergent, textile, and pharmaceutical industries, besides being used in water treatment plants. According to the required application, a suitable enzyme immobilization technique and suitable carrier materials are chosen. Enzyme immobilization techniques involve covalent binding, encapsulation, entrapment, adsorption, etc. This review mainly covers enzyme immobilization by various techniques and their usage in different industrial applications starting from 1992 until 2022. It also focuses on the multiscale operation of immobilized enzymes to maximize yields of certain products. Lastly, the severe consequence of the COVID-19 pandemic on global enzyme production is briefly discussed.

5.
Int J Biol Macromol ; 204: 161-168, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35074332

RESUMO

It has been more than one year since the first case of the coronaviruses was infected by COVID-19 in China. The world witnessed three waves of the corona virus till now, and more upcoming is expected, whereas several challenges are presented. Empirical data displayed that the features of the virus effects do vary between the three periods. The severity of the disease, differences in symptoms, attitudes of the people have been reported, although the comparative characteristics of the three waves still keep essentially indefinite. In contrast, the sense of danger toward the cries gradually decreases in most countries. This may be due to some factors, including the approved vaccines, introducing alternative plans from politicians to control and deal with the epidemic, and decreasing the mortality rates. However, the alarm voice started to rise again with the appearance of new variant strains with several mutations in the virus. Several more questions began to be asked without sufficient answers. Mutations in COVID-19 have introduced an extreme challenge in preventing and treating SARS-COV-2. The essential feature for mutations is producing new variants known by high tensmibility, disturbing the viral fitness, and enhancing the virus replication. One of the variants that has emerged recently is the Delta variant (B.1.617.2), which was firstly detected in India. In November 2021, a more ferocious mutant appeared in South Africa, also called omicron (B.1.1.529). These mutants grabbed world attention because of their higher transmissibility than the progenitor variants and spread rapidly. Several information about the virus are still confusing and remains secret. There are eight approved vaccines in the market; however, the investigation race about their effect against reinfection and their role against the new variants is still under investigation. Furthermore, this is the first time vaccinating against COVID-19, so the question remains: Will we need an annual dose of the corona vaccines, and the side effects don't been observed till now?


Assuntos
COVID-19/epidemiologia , SARS-CoV-2/genética , Vacinação/tendências , Vacinas contra COVID-19/genética , Humanos , Pandemias , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/genética , Cobertura Vacinal/tendências
6.
Int J Biol Macromol ; 193(Pt B): 1532-1540, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34732305

RESUMO

The Severe Acute Respiratory Syndrome-related Coronavirus 2 (COVID-19 or SARS-CoV-2) epidemic is professed as world disaster producing a worrying increasing mortality, particularly amongst vulnerable humans worldwide. Whether COVID-19 has a strong ability for acceptable genetic flexibility that amended for breaking immune responses quickly, it is critical to understand the adaptation mechanism between viruses and hosts that allows individuals to follow viral development. This can contribute to finding the appropriate treatment to combat the epidemic. However, the present information about viral adaptation mechanisms in hosts is still insufficient, and future investigations may reveal the unknown. Mutations and genetic variations are naturally occurring; however, the current knowledge about their mechanism and pathways still has many secrets. The present review also provides insights into the immune system, immunological memory, and the development of the COVID-19 vaccine. Other fighting methods against COVID-19 are also highlighted. The potential of antibodies, natural metabolites, and current suggest vaccines were applied to the face of this new threat.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Interações Hospedeiro-Patógeno/imunologia , Memória Imunológica , SARS-CoV-2/fisiologia , COVID-19/imunologia , COVID-19/mortalidade , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/uso terapêutico , Humanos
7.
RSC Adv ; 9(42): 24539-24559, 2019 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35527869

RESUMO

Nanoparticles (NPs) are new inspiring clinical targets that have emerged from persistent efforts with unique properties and diverse applications. However, the main methods currently utilized in their production are not environmentally friendly. With the aim of promoting a green approach for the synthesis of NPs, this review describes eco-friendly methods for the preparation of biogenic NPs and the known mechanisms for their biosynthesis. Natural plant extracts contain many different secondary metabolites and biomolecules, including flavonoids, alkaloids, terpenoids, phenolic compounds and enzymes. Secondary metabolites can enable the reduction of metal ions to NPs in eco-friendly one-step synthetic processes. Moreover, the green synthesis of NPs using plant extracts often obviates the need for stabilizing and capping agents and yields biologically active shape- and size-dependent products. Herein, we review the formation of metallic NPs induced by natural extracts and list the plant extracts used in the synthesis of NPs. In addition, the use of bacterial and fungal extracts in the synthesis of NPs is highlighted, and the parameters that influence the rate of particle production, size, and morphology are discussed. Finally, the importance and uniqueness of NP-based products are illustrated, and their commercial applications in various fields are briefly featured.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...