Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Braz. J. Pharm. Sci. (Online) ; 58: e201875, 2022. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1403725

RESUMO

Abstract Two polyurethane foam-based sorbents (PUF) were synthesized by imprinting and grafting techniques and examined for selective separation and preconcentration of caffeine (CAF) in some pharmaceutical products and in black tea. Molecularly imprinted PUF was synthesized based on hydrogen-bonding interactions between CAF and alizarin yellow G (AYG) and subsequent polymerization into PUF. The static experiments indicated optimum sorption conditions at pH=6.5 and 5.5 for imprinted PUF (AY-IPUF) and grafted PUF (AY-GPUF), respectively. In the online experiments, the suitable preconcentration time was found to be 40 and 20s for (AY-IPUF) and (AY-GPUF), respectively, at a flow rate of 1.75 mL.min-1. Desorption of CAF has been affected by passing 500 µL of 0.05, 0.01 mol.L−1 HCl eluent onto (AY-IPUF) and (AY-GPUF), respectively. The online methods have provided satisfactory enrichment factors of 8.4 and 10.5 for (AY-IPUF) and (AY-GPUF), respectively. The time consumed for preconcentartion, elution and determination steps was 1.48 and 1.05 min, thus, the throughput was 42 and 57 h-1, for (AY-IPUF) and (AY-GPUF), respectively. The developed sorbents were studied for the determination of CAF in pharmaceutical samples which will be helpful to minimize caffeinism. Finally, in silico bioactivity, ADMET and drug-likeness predictive computational studies of caffeine were also carried out


Assuntos
Poliuretanos/efeitos adversos , Cafeína/efeitos adversos , Polimerização , Chá , Farmacocinética , Preparações Farmacêuticas/análise , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA