Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(15): e35636, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39170289

RESUMO

The current study inspects the therapeutic effects of orally ingested insulin-loaded chitosan nanobeads (INS-CsNBs) with a pectin-dextrin (PD) coating on streptozotocin (STZ)-induced diabetes in Wistar rats. The study also assessed antioxidant effects in pancreatic tissue homogenate, insulin, C-peptide, and inflammatory markers interleukin-1 beta and interleukin-6 (IL-1ß and IL-6) in serum. Additionally, histopathological and immunohistochemical examination of insulin granules, oxidative stress, nuclear factor kappa B (NF-κB P65), and sirtuin-1 (SIRT-1) protein detection, as well as gene expression of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), B-cell lymphoma 2 (Bcl2), and Bcl-2-associated X protein (Bax) in pancreatic tissue were investigated. After induction of diabetes with STZ, rats were allocated into 6 groups: the normal control (C), the diabetic control (D), and the diabetic groups treated with INS-CsNBs coated with PD shell (50 IU/kg) (NF), free oral insulin (10 IU/kg) (FO), CsNBs-PD shell (50 IU/kg) (NB), and subcutaneous insulin (10 IU/kg) (Sc). The rats were treated daily for four weeks. Treatment of diabetic rats with INS-CsNBs coated with PD shell resulted in a significant improvement in blood glucose levels, elevated antioxidant activities, decreased NF-κB P65, IL-1ß, and IL-6 levels, upregulated Nrf-2 and HO-1, in addition to a marked improvement in the histological architecture and integrity compared to the diabetic group. The effects of oral INS-CsNBs administration were comparable to those of subcutaneous insulin. In conclusion, oral administration of INS-loaded Cs-NBs with a pectin-dextrin shell demonstrated an ameliorative effect on STZ-induced diabetes, avoiding the drawbacks of subcutaneous insulin.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39099309

RESUMO

Triple-negative breast cancer (TNBC) has short survival rates. This study aimed to prepare a novel formula of sorafenib, carbon nanotubes (CNTs), and folic acid to be tested as a drug delivery system targeting versus TNBC compared with free sorafenib and to evaluate the formula stability, in vitro pharmacodynamic, and in vivo pharmacokinetic properties. The formula preparation was done by the synthesis of polyethylene glycol bis amine linker, CNT PEGylation, folic acid attachment, and sorafenib loading. The prepared formula has been characterized using X-ray diffraction, Flourier-transform infrared, 1HNMR, UV, high resolution-transmission electron microscope, field emission scanning electron microscopy, and Zeta potential. In vitro studies included drug release determination, MTT assay, flow cytometry to determine the apoptotic stage with percent, cell cycle analysis, and apoptotic marker assays for caspase-3, 8, 9, cytochrome c, and BCL-2. The in vivo study was performed to determine bioavailability and half-life in rats. The in vitro MTT antiproliferative assay revealed that the formula was threefold more cytotoxic toward TNBC cells than free sorafenib, and the flow cytometry showed a significant increase in apoptosis and necrosis. The formula has a greater inhibitory effect on BCL-2 and a lessening effect on cytochrome c and caspases 3, 8, and 9 than free sorafenib. In vivo experiments proved that our novel formula was superior to free sorafenib by increasing bioavailability by eight times and prolonging the half-life by three times. These results confirmed the successful preparation of the desired formula with better pharmacodynamic and pharmacokinetic properties. These promising results may show a novel therapeutic strategy for TNBC patients.

3.
Heliyon ; 10(1): e23527, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38169932

RESUMO

Neuroinflammation contributes to the pathogenesis of several neurodegenerative disorders. This study examined the neuroprotective effect of quercetin (QUR)-loaded poly (lactic-co-glycolic) acid (PLGA) nanoparticles (QUR NANO) against the neurotoxicity induced by lipopolysaccharide (LPS) in mice. A QUR NANO formulation was prepared and characterized by differential scanning calorimetry, X-ray diffraction, entrapment efficiency (EE), high-resolution transmission electron microscopy, field emission scanning electron microscopy, and in vitro drug release profile. Levels of glutathione, malondialdehyde, catalase, inducible nitric oxide synthase (iNOS), amyloid beta 42 (Aß42), ß-secretase, gamma-aminobutyric acid (GABA), and acetylcholine esterase (AChE) were measured in the mouse brain tissues. The gene expression of nuclear factor erythroid-related factor 2 (Nrf-2) and heme oxygenase-1 (HO-1) were also determined. The prepared QUR NANO formulation showed 92.07 ± 3.21% EE and drug loading of 4.62 ± 0.55. It exhibited clusters of nano-spherical particles with smooth surface areas, and the loading process was confirmed. In vivo, the QUR NANO preserved the spatial memory of mice and protected the hippocampus from LPS-induced histological lesions. The QUR NANO significantly reduced the levels of malondialdehyde, iNOS, Aß42, ß-secretase, and AChE in brain tissue homogenates. Conversely, QUR NANO increased the glutathione, catalase, and GABA concentrations and upregulated the expression of Nrf-2 and HO-1 genes. Remarkably, the neuroprotective effect of QUR NANO was significantly greater than that of herbal QUR. In summary, the prepared QUR NANO formulation was efficient in mitigating LPS-induced neurotoxicity by reducing memory loss, oxidative stress, and amyloidogenesis while preserving neurotransmission and upregulating the expression of Nrf2 and HO-1 genes. This study addresses several key factors in neuroinflammatory disorders and explores the potential of QUR-loaded nanoparticles as a novel therapeutic approach to alleviate these factors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA