Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
3 Biotech ; 14(6): 161, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38799268

RESUMO

This study evaluated Streptomyces rochei strain NAM-19 solid-state fermentation of agricultural wastes to produce alkaline protease. Alkaline protease production increased with flaxseed, rice bran, and cheese whey fermentation reaching 147 U/mL at 48 h. Statistical optimization of alkaline protease production was performed using the central composite design (CDD). Results of CDD and the optimization plot showed that 4.59 g/L flaxseed, 4.31 g/L rice bran, 4.17 mL cheese whey, and a vegetative inoculum size of 7.0% increased alkaline protease production by 27.2% reaching 186 U/mL. Using the 20-70% ammonium sulfate fractionation method, the optimally produced enzyme was partially purified to fivefold. The partially purified alkaline protease was then covalently immobilized on a biopolymer carrier, glutaraldehyde-polyethylene-imine-κ-carrageenan (GA-PEI-Carr), with 90% immobilization efficiency. Characterizations revealed that immobilization improved thermostability, reusability, optimum temperature, and sensitivity towards metal ions of the free enzyme. The optimal temperature for free and immobilized enzymes was 40 and 50 °C, respectively. Both enzymes had the same optimum pH of 10. Immobilization increased Km from 19.73 to 26.52 mM and Vmax from 56.7 to 62.5 mmol min-1L-1. The immobilized enzyme retained 35% of its initial activity at 70 °C, while the free enzyme retained only 5%. The immobilized enzyme kept 80% of its initial activity at the 20th cycle. After 7 weeks of storage, the free enzyme lost all its initial activity, whereas the immobilized enzyme retained 50%. The free and immobilized enzymes were able to hydrolyze gelatin, and azo-casein demonstrating different relative activity, 85, 80, 90 and 95%, respectively, compared to casein (100%).

2.
Sci Rep ; 13(1): 13026, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563274

RESUMO

Nutritional yeast-produced soy yogurt has grown in demand, because of its unique nutritional and health benefits. It has low cholesterol, no lactose, and high levels of protein, probiotic yeast, vitamins, and minerals. In this work, Soymilk (12.5%) was prepared and fermented to produce soy yogurt. Growth curves, probiotic characteristics of Saccharomyces boulardii CNCMI-745 and Lactobacillus plantarum KU985432 were determined. The nutritional value of both yogurts was evaluated, including viable cell count, protein, vitamin B-complex, sugars, phenolic acids, and fatty acids, mineral content, stability, and storage. Analysis of the physicochemical composition of the yogurts included assessment of titratable acidity, antioxidant potential, viscosity, and moisture content. The probiotic viable count of the produced yogurts met the standards for commercial yogurts. S. boulardii CNCMI-745 displayed safety characteristics and high tolerance to heat, acid, and alkaline stress. The produced B vitamins increased in both yogurts. The total saturated fatty acids in Saccharomyces-yogurt decreased, while the unsaturated fatty acids increased. Saccharomyces-yogurt showed high antioxidant activity, phenolic acids, and crude protein content. Both yogurts demonstrated the same tendency for stability during 16 day-storage. In conclusion, using nutritional yeast in the production of soy yogurt increased its nutritional content more than probiotic lactic acid bacteria.


Assuntos
Lactobacillus plantarum , Probióticos , Saccharomyces boulardii , Saccharomyces , Leite de Soja , Lactobacillus plantarum/metabolismo , Iogurte/microbiologia , Probióticos/metabolismo , Leite de Soja/química , Saccharomyces cerevisiae , Antioxidantes/metabolismo , Minerais/metabolismo
3.
World J Microbiol Biotechnol ; 38(6): 106, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35507200

RESUMO

Continue to hypothesize that honey is a storehouse of beneficial bacteria, and the majority of these isolates are levansucrase producers. Accordingly, ten bacterial strains were isolated from different honey sources. Four honey isolates that had the highest levansucrase production and levan yield were identified by the partial sequencing of the 16S rRNA gene as Achromobacter sp. (10A), Bacillus paralicheniformis (2M), Bacillus subtilis (9A), and Bacillus paranthracis (13M). The cytotoxicity of the selected isolates showed negative blood hemolysis. Also, they are sensitive to the tested antibiotics (Amoxicillin + Flucloxacillin, Ampicillin, Gentamicin, Benzathine benzylpenicillin, Epicephin, Vancomycin, Amikacin, and Zinol). The isolates had strong alkaline stability (pHs 9, 11) and were resistant to severe acidic conditions (29-100 percent). The tested isolates recorded complete tolerance to both H2O2 and the bile salt (0.3% Oxgall powder) after 24 h incubation. The cell-free supernatant of the examined strains had antifungal activities against C. Albicans with varying degrees. Also, isolates 2M and 13M showed strong activities against S. aureus. The isolates showed strong adhesion and auto-aggregation capacity. Isolate 10A showed the highest antioxidant activity (91.45%) followed by 2M (47.37%). The isolates recorded different catalase and protease activity. All isolates produced cholesterol oxidase and lipase with different levels. Besides, the four isolates reduced LDL (low-density lipoprotein) to different significant values. The cholesterol-reducing ability varied not only for strains but also for the time of incubation. The previous results recommended these isolates be used safely in solving the LDL problem.


Assuntos
Mel , Probióticos , Bacillus subtilis/genética , Colesterol , Mel/microbiologia , Peróxido de Hidrogênio , RNA Ribossômico 16S/genética , Staphylococcus aureus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...