Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 14452, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914569

RESUMO

The development of flame-retardant materials has become an important research direction. For the past dozen years, researchers have been exploring flame retardants with high flame-retardant efficiency, low toxicity, less smoke, or other excellent performance flame retardants. Therefore, this work aimed to synthesize new cyclodiphosph(V)azane derivatives and their Cu(II) and Cd(II) metal complexes and investigated their potential applications as high flame-retardant efficiency. Various techniques were used to characterize the prepared ligand H2L and its metal complexes, including elemental analyses, mass spectra, conductivity measurements, electronic spectral data UV-vis, FT-IR, 1H,13C-NMR, TGA, XRD, and molecular docking experiments studies were M. tuberculosis receptors (PDB ID: 5UHF) and the crystal structure of human topoisomerase II alpha (PDB ID: 4FM9). Wood-based paint was physically mixed with the ligand H2L and its metal complexes. The obtained results of mechanical characteristics of the dried paint layers were noticed to improve, such as gloss value, which ranged from 85 to 95, hardness 1.5-2.5 kg, adhesion 4B to 5B, and impact resistance, which improved from 1.3 to 2.5 J. Moreover, the obtained results of flame-retardant properties showed a significant retardant impact compared to the blank sample, such as ignitability, which includes the heat flux which increased from 10 to 25 kW/m2, and ignition time, ranging from 550 to 1200 s, respectively, and limiting oxygen index (LOI) (%) which has been increased from 21 to 130 compared with the plywood sample and sample blank. The ordering activity of the observed results was noticed that coated sample based on Cd(II) metal complexes > coated sample based on Cu(II) metal complexes of Cyclophosphazene ligand > coated sample based on phosphazene ligand H2L > coated sample without additives > uncoated sample. This efficiency may be attributed to (1) the H2L is an organophosphorus compound, which contains P, N, Cl, and aromatic six- and five-member ring, (2) Cu(II) and Cd(II) metal complexes characterized by high thermal stability, good stability, excellent performance flame retardants, and wide application.

2.
ACS Omega ; 8(23): 20283-20292, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37323399

RESUMO

Aerogel is a high-performance thermal resistance material desired for high-temperature applications like dye-sensitized solar cells, batteries, and fuel cells. To increase the energy efficiency of batteries, an aerogel is required to reduce the energy loss arising from the exothermal reaction. This paper synthesized a different composition of inorganic-organic hybrid material by growing the silica aerogel inside a polyacrylamide (PAAm) hydrogel. The hybrid PaaS/silica aerogel was synthesized using different irradiation doses of gamma rays (10-60 kGy) and different solid contents of PAAm (6.25, 9.37, 12.5, and 30 wt %). Here, PAAm is used as an aerogel formation template and carbon precursor after the carbonization process at a temperature of (150, 350, and 1100 °C). The hybrid PAAm/silica aerogel was converted into aluminum/silicate aerogels after soaking in a solution of AlCl3. Then, the carbonization process takes place at a temperature of (150, 350, and 1100 °C) for 2 h to provide C/Al/Si aerogels with a density of around 0.18-0.040 gm/cm3 and porosity of 84-95%. The hybrid C/Al/Si aerogels presented interconnected networks of porous structures with different pore sizes depending on the carbon and PAAm contents. The sample with a solid content of 30% PAAm in the C/Al/Si aerogel was composed of interconnected fibrils whose diameter was about 50 µm. The structure after carbonization at 350 and 1100 °C was a condensed opening porous 3D network structure. This sample gives the optimum thermal resistance and a very low thermal conductivity of 0.073 (w/m·k) at low carbon content (2.71% at temperature 1100 °C) and high vpore (95%) compared with carbon content 42.38% and vpore (93%) which give 0.102 (w/m·k). This is because at 1100 °C, the carbon atoms evolve to leave an area between Al/Si aerogel particles, increasing the pore size. Furthermore, the Al/Si aerogel had excellent removal ability for various oil samples.

3.
Sci Rep ; 13(1): 7268, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37142616

RESUMO

In our paper, we have synthesized modified PEA and alkyd resin by replacing the new source of polyol (SDEA) which was confirmed by different analyses such as IR, and 1HNMR spectra. A series of conformal, novel, low-cost, and eco-friendly hyperbranched modified alkyd and PEA resins were fabricated with bio ZnO, CuO/ZnO) NPs through an ex-situ method for mechanical and anticorrosive coatings. The synthesized biometal oxides NPs and its composite modified alkyd and PEA were confirmed by FTIR, SEM with EDEX, TEM, and TGA, and can be stably dispersed into modified alkyd and PEA resins at a low weight fraction of 1%. The nanocomposite coating was also subjected to various tests to determine their surface adhesion, which ranged from (4B-5B), physico-mechanical characteristics such as scratch hardness, which improved from < 1.5 to > 2 kg, gloss (100-135) Specific gravity (0.92-0.96) and also chemical resistance test which passed for water, acid, and solvent except alkali, was poor because of the hydrolyzable ester group in the alkyd and PEA resins. The anti-corrosive features of the nanocomposites were investigated through salt spray tests in 5 wt % NaCl. The results indicate that well-dispersed bio ZnO and CuO/ZnO) NPs (1.0%) in the interior of the hyperbranched alkyd and PEA matrix improve the durability and anticorrosive attributes of the composites, such as degree of rusting, which ranged from 5 to 9, blistering size ranged from 6 to 9, and finally, scribe failure, which ranged from 6 to 9 mm. Thus, they exhibit potential applications in eco- friendly surface coatings. The anticorrosion mechanisms of the nanocomposite alkyd and PEA coating were attributed to the synergistic effect of bio ZnO and (CuO/ZnO) NPs and the prepared modified resins are highly rich in nitrogen elements, which might be regarded as a physical barrier layer for steel substrates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA