Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 16(8)2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39204362

RESUMO

Over the last decade, scientists have shifted their focus to the development of smart carriers for the delivery of chemotherapeutics in order to overcome the problems associated with traditional chemotherapy, such as poor aqueous solubility and bioavailability, low selectivity and targeting specificity, off-target drug side effects, and damage to surrounding healthy tissues. Nanofiber-based drug delivery systems have recently emerged as a promising drug delivery system in cancer therapy owing to their unique structural and functional properties, including tunable interconnected porosity, a high surface-to-volume ratio associated with high entrapment efficiency and drug loading capacity, and high mass transport properties, which allow for controlled and targeted drug delivery. In addition, they are biocompatible, biodegradable, and capable of surface functionalization, allowing for target-specific delivery and drug release. One of the most common fiber production methods is electrospinning, even though the relatively two-dimensional (2D) tightly packed fiber structures and low production rates have limited its performance. Forcespinning is an alternative spinning technology that generates high-throughput, continuous polymeric nanofibers with 3D structures. Unlike electrospinning, forcespinning generates fibers by centrifugal forces rather than electrostatic forces, resulting in significantly higher fiber production. The functionalization of nanocarriers on nanofibers can result in smart nanofibers with anticancer capabilities that can be activated by external stimuli, such as light. This review addresses current trends and potential applications of light-responsive and dual-stimuli-responsive electro- and forcespun smart nanofibers in cancer therapy, with a particular emphasis on functionalizing nanofiber surfaces and developing nano-in-nanofiber emerging delivery systems for dual-controlled drug release and high-precision tumor targeting. In addition, the progress and prospective diagnostic and therapeutic applications of light-responsive and dual-stimuli-responsive smart nanofibers are discussed in the context of combination cancer therapy.

2.
Pharmaceutics ; 15(2)2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36839855

RESUMO

Rasagiline mesylate (RSM) is a hydrophilic drug with poor oral bioavailability (36%) because of hepatic first-pass metabolism. The present study focuses on delivering RSM directly to the brain through its inclusion within transferosomal in situ gel administered through the intranasal (IN) route. Transferosomes were formed by the thin-film hydration method with the aid of Design-Expert® software by varying the edge activator (EA) type in the absence or presence of cholesterol. By desirability calculations, the optimum formulation was composed of phosphatidylcholine and sodium deoxycholate as an EA (5:1% w/w) with no cholesterol. The optimum formulation was 198.63 ± 34.98 nm in size and displayed an entrapment efficiency of 95.73 ± 0.09%. Transmission electron microscopy revealed discrete and spherical vesicles. Optimized transferosomes were further incorporated into an in situ gel composed of 0.5% pectin, 15% Pluronic® F-127, and 5% Pluronic® F-68 and tested for the in vivo performance. The systemic as well as brain kinetics were assessed in rats by comparing the IN-administered in situ gel to the IV aqueous solution. The optimum in situ gel showed safety and biocompatibility on rats' nasal mucosa with enhanced brain bioavailability (131.17%). Drug targeting efficiency and direct transport percentage indices (304.53% and 67.16%, respectively) supported successful brain targeting offering direct nose-to-brain drug delivery.

3.
AAPS PharmSciTech ; 20(7): 258, 2019 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-31332638

RESUMO

Febuxostat suffers from relatively low bioavailability owing to the poor drug solubility and hepatic first-pass effect. This study aimed to prepare highly drug-loaded self-nanoemulsifying self-nanosuspension systems (SNESNS). SNESNS were designed to improve febuxostat's oral bioavailability by enhancing its solubility. Different oil and surfactant/co-surfactant mixtures were used for the preparation of SNESNS. The prepared SNESNS were estimated for their particle size, in vitro drug release and transmission electron microscopy (TEM). Results revealed that the oil mixture of Capryol™ 90:Miglyol® 812 (1:1 w/w) with surfactant/co-surfactant mixture of Cremophor® RH 40/Transcutol® HP loaded with drug in 4-fold greater concentration than its saturated solubility resulted in the formation of SNESNS by dilution under the effect of magnetic stirring. SNESNS were freeze-dried using trehalose as a cryoprotectant. TEM images and the bimodal particle size curve confirmed the formation of the biphasic nanosystems after dilution (nanoemulsion and nanosuspension). Higher Cmax and AUC0-48 values compared to those of the market product Feburic® tablets confirmed the success of the SNESNS as a promising carrier for drugs suffering from poor water solubility like febuxostat.


Assuntos
Formas de Dosagem , Sistemas de Liberação de Medicamentos/métodos , Emulsões , Liofilização , Nanopartículas/administração & dosagem , Administração Oral , Animais , Disponibilidade Biológica , Liberação Controlada de Fármacos , Feminino , Camundongos , Tamanho da Partícula , Solubilidade , Tensoativos/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA