Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
IEEE Trans Pattern Anal Mach Intell ; 46(5): 3321-3333, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38096092

RESUMO

Uncertainty quantification for inverse problems in imaging has drawn much attention lately. Existing approaches towards this task define uncertainty regions based on probable values per pixel, while ignoring spatial correlations within the image, resulting in an exaggerated volume of uncertainty. In this paper, we propose PUQ (Principal Uncertainty Quantification) - a novel definition and corresponding analysis of uncertainty regions that takes into account spatial relationships within the image, thus providing reduced volume regions. Using recent advancements in generative models, we derive uncertainty intervals around principal components of the empirical posterior distribution, forming an ambiguity region that guarantees the inclusion of true unseen values with a user-defined confidence probability. To improve computational efficiency and interpretability, we also guarantee the recovery of true unseen values using only a few principal directions, resulting in more informative uncertainty regions. Our approach is verified through experiments on image colorization, super-resolution, and inpainting; its effectiveness is shown through comparison to baseline methods, demonstrating significantly tighter uncertainty regions.

2.
Sensors (Basel) ; 23(14)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37514803

RESUMO

Differential privacy (DP) defines privacy protection by promising quantified indistinguishability between individuals who consent to share their privacy-sensitive information and those who do not. DP aims to deliver this promise by including well-crafted elements of random noise in the published data, and thus there is an inherent tradeoff between the degree of privacy protection and the ability to utilize the protected data. Currently, several open-source tools have been proposed for DP provision. To the best of our knowledge, there is no comprehensive study for comparing these open-source tools with respect to their ability to balance DP's inherent tradeoff as well as the use of system resources. This work proposes an open-source evaluation framework for privacy protection solutions and offers evaluation for OpenDP Smartnoise, Google DP, PyTorch Opacus, Tensorflow Privacy, and Diffprivlib. In addition to studying their ability to balance the above tradeoff, we consider discrete and continuous attributes by quantifying their performance under different data sizes. Our results reveal several patterns that developers should have in mind when selecting tools under different application needs and criteria. This evaluation survey can be the basis for an improved selection of open-source DP tools and quicker adaptation of DP.

3.
IEEE Trans Pattern Anal Mach Intell ; 44(12): 9222-9235, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-34735338

RESUMO

Neural networks that are based on the unfolding of iterative solvers as LISTA (Learned Iterative Soft Shrinkage), are widely used due to their accelerated performance. These networks, trained with a fixed dictionary, are inapplicable in varying model scenarios, as opposed to their flexible non-learned counterparts. We introduce, Ada-LISTA, an adaptive learned solver which receives as input both the signal and its corresponding dictionary, and learns a universal architecture to serve them all. This scheme allows solving sparse coding in linear rate, under varying models, including permutations and perturbations of the dictionary. We provide an extensive theoretical and numerical study, demonstrating the adaptation capabilities of our approach, and its application to the task of natural image inpainting.


Assuntos
Algoritmos , Redes Neurais de Computação , Aprendizagem
4.
IEEE Trans Image Process ; 30: 6673-6685, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34264828

RESUMO

Could we compress images via standard codecs while avoiding visible artifacts? The answer is obvious - this is doable as long as the bit budget is generous enough. What if the allocated bit-rate for compression is insufficient? Then unfortunately, artifacts are a fact of life. Many attempts were made over the years to fight this phenomenon, with various degrees of success. In this work we aim to break the unholy connection between bit-rate and image quality, and propose a way to circumvent compression artifacts by pre-editing the incoming image and modifying its content to fit the given bits. We design this editing operation as a learned convolutional neural network, and formulate an optimization problem for its training. Our loss takes into account a proximity between the original image and the edited one, a bit-budget penalty over the proposed image, and a no-reference image quality measure for forcing the outcome to be visually pleasing. The proposed approach is demonstrated on the popular JPEG compression, showing savings in bits and/or improvements in visual quality, obtained with intricate editing effects.

5.
IEEE Trans Image Process ; 30: 5944-5955, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34166193

RESUMO

This work considers noise removal from images, focusing on the well-known K-SVD denoising algorithm. This sparsity-based method was proposed in 2006, and for a short while it was considered as state-of-the-art. However, over the years it has been surpassed by other methods, including the recent deep-learning-based newcomers. The question we address in this paper is whether K-SVD was brought to its peak in its original conception, or whether it can be made competitive again. The approach we take in answering this question is to redesign the algorithm to operate in a supervised manner. More specifically, we propose an end-to-end deep architecture with the exact K-SVD computational path, and train it for optimized denoising. Our work shows how to overcome difficulties arising in turning the K-SVD scheme into a differentiable, and thus learnable, machine. With a small number of parameters to learn and while preserving the original K-SVD essence, the proposed architecture is shown to outperform the classical K-SVD algorithm substantially, and getting closer to recent state-of-the-art learning-based denoising methods. Adopting a broader context, this work touches on themes around the design of deep-learning solutions for image processing tasks, while paving a bridge between classic methods and novel deep-learning-based ones.

6.
Proc Natl Acad Sci U S A ; 117(44): 27070-27072, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33060299
7.
IEEE Trans Pattern Anal Mach Intell ; 42(8): 1968-1980, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-30869611

RESUMO

Parsimonious representations are ubiquitous in modeling and processing information. Motivated by the recent Multi-Layer Convolutional Sparse Coding (ML-CSC) model, we herein generalize the traditional Basis Pursuit problem to a multi-layer setting, introducing similar sparse enforcing penalties at different representation layers in a symbiotic relation between synthesis and analysis sparse priors. We explore different iterative methods to solve this new problem in practice, and we propose a new Multi-Layer Iterative Soft Thresholding Algorithm (ML-ISTA), as well as a fast version (ML-FISTA). We show that these nested first order algorithms converge, in the sense that the function value of near-fixed points can get arbitrarily close to the solution of the original problem. We further show how these algorithms effectively implement particular recurrent convolutional neural networks (CNNs) that generalize feed-forward ones without introducing any parameters. We present and analyze different architectures resulting from unfolding the iterations of the proposed pursuit algorithms, including a new Learned ML-ISTA, providing a principled way to construct deep recurrent CNNs. Unlike other similar constructions, these architectures unfold a global pursuit holistically for the entire network. We demonstrate the emerging constructions in a supervised learning setting, consistently improving the performance of classical CNNs while maintaining the number of parameters constant.

8.
Artigo em Inglês | MEDLINE | ID: mdl-31725378

RESUMO

Single image dehazing is a critical stage in many modern-day autonomous vision applications. Early prior-based methods often involved a time-consuming minimization of a hand-crafted energy function. Recent learning-based approaches utilize the representational power of deep neural networks (DNNs) to learn the underlying transformation between hazy and clear images. Due to inherent limitations in collecting matching clear and hazy images, these methods resort to training on synthetic data, constructed from indoor images and corresponding depth information. This may result in a possible domain shift when treating outdoor scenes. We propose a completely unsupervised method of training via minimization of the well-known, Dark Channel Prior (DCP) energy function. Instead of feeding the network with synthetic data, we solely use real-world outdoor images and tune the network's parameters by directly minimizing the DCP. Although our "Deep DCP" technique can be regarded as a fast approximator of DCP, it actually improves its results significantly. This suggests an additional regularization obtained via the network and learning process. Experiments show that our method performs on par with large-scale supervised methods.

9.
IEEE Trans Image Process ; 28(12): 6063-6076, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31251189

RESUMO

Single image super-resolution (SISR) aims to recover a high-resolution image from a given low-resolution version of it. Video super-resolution (VSR) targets a series of given images, aiming to fuse them to create a higher resolution outcome. Although SISR and VSR seem to have a lot in common, most SISR algorithms do not have a simple and direct extension to VSR. VSR is considered a more challenging inverse problem, mainly due to its reliance on a sub-pixel accurate motion-estimation, which has no parallel in SISR. Another complication is the dynamics of the video, often addressed by simply generating a single frame instead of a complete output sequence. In this paper, we suggest a simple and robust super-resolution framework that can be applied to single images and easily extended to video. Our work relies on the observation that denoising of images and videos is well-managed and very effectively treated by a variety of methods. We exploit the plug-and-play-prior framework and the regularization-by-denoising (RED) approach that extends it, and show how to use such denoisers in order to handle the SISR and the VSR problems using a unified formulation and framework. This way, we benefit from the effectiveness and efficiency of existing image/video denoising algorithms, while solving much more challenging problems. More specifically, harnessing the VBM3D video denoiser, we obtain a strongly competitive motion-estimation free VSR algorithm, showing tendency to a high-quality output and fast processing.

10.
Artigo em Inglês | MEDLINE | ID: mdl-29994212

RESUMO

In imaging systems, following acquisition, an image/ video is transmitted or stored and eventually presented to human observers using different and often imperfect display devices. While the resulting quality of the output image may severely be affected by the display, this degradation is usually ignored in the preceding compression. In this paper we model the sub-optimality of the display device as a known degradation operator applied on the decompressed image/video. We assume the use of a standard compression path, and augment it with a suitable pre-processing procedure, providing a compressed signal intended to compensate the degradation without any post-filtering. Our approach originates from an intricate rate-distortion problem, optimizing the modifications to the input image/video for reaching best end-to-end performance. We address this seemingly computationally intractable problem using the alternating direction method of multipliers (ADMM) approach, leading to a procedure in which a standard compression technique is iteratively applied. We demonstrate the proposed method for adjusting HEVC image/video compression to compensate post-decompression visual effects due to a common type of displays. Particularly, we use our method to reduce motion-blur perceived while viewing video on LCD devices. The experiments establish our method as a leading approach for preprocessing high bit-rate compression to counterbalance a postdecompression degradation.

11.
IEEE Trans Image Process ; 27(1): 220-235, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28910768

RESUMO

Image and texture synthesis is a challenging task that has long been drawing attention in the fields of image processing, graphics, and machine learning. This problem consists of modeling the desired type of images, either through training examples or via a parametric modeling, and then generating images that belong to the same statistical origin. This paper addresses the image synthesis task, focusing on two specific families of images-handwritten digits and face images. This paper offers two main contributions. First, we suggest a simple and intuitive algorithm capable of generating such images in a unified way. The proposed approach taken is pyramidal, consisting of upscaling and refining the estimated image several times. For each upscaling stage, the algorithm randomly draws small patches from a patch database and merges these to form a coherent and novel image with high visual quality. The second contribution is a general framework for the evaluation of the generation performance, which combines three aspects: the likelihood, the originality, and the spread of the synthesized images. We assess the proposed synthesis scheme and show that the results are similar in nature, and yet different from the ones found in the training set, suggesting that true synthesis effect has been obtained.

12.
IEEE Trans Image Process ; 26(5): 2338-2351, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28287968

RESUMO

Style transfer is a process of migrating a style from a given image to the content of another, synthesizing a new image, which is an artistic mixture of the two. Recent work on this problem adopting convolutional neural-networks (CNN) ignited a renewed interest in this field, due to the very impressive results obtained. There exists an alternative path toward handling the style transfer task, via the generalization of texture synthesis algorithms. This approach has been proposed over the years, but its results are typically less impressive compared with the CNN ones. In this paper, we propose a novel style transfer algorithm that extends the texture synthesis work of Kwatra et al. (2005), while aiming to get stylized images that are closer in quality to the CNN ones. We modify Kwatra's algorithm in several key ways in order to achieve the desired transfer, with emphasis on a consistent way for keeping the content intact in selected regions, while producing hallucinated and rich style in others. The results obtained are visually pleasing and diverse, shown to be competitive with the recent CNN style transfer algorithms. The proposed algorithm is fast and flexible, being able to process any pair of content + style images.

13.
IEEE Trans Image Process ; 25(9): 3967-78, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27295669

RESUMO

Measuring the similarity between the patches in images is a fundamental building block in various tasks. Naturally, the patch size has a major impact on the matching quality and on the consequent application performance. Under the assumption that our patch database is sufficiently sampled, using large patches (e.g., 21 × 21 ) should be preferred over small ones (e.g., 7 × 7 ). However, this dense-sampling assumption is rarely true; in most cases, large patches cannot find relevant nearby examples. This phenomenon is a consequence of the curse of dimensionality, stating that the database size should grow exponentially with the patch size to ensure proper matches. This explains the favored choice of small patch size in most applications. Is there a way to keep the simplicity and work with small patches while getting some of the benefits that large patches provide? In this paper, we offer such an approach. We propose to concatenate the regular content of a conventional (small) patch with a compact representation of its (large) surroundings-its context. Therefore, with a minor increase of the dimensions (e.g., with additional ten values to the patch representation), we implicitly/softly describe the information of a large patch. The additional descriptors are computed based on a self-similarity behavior of the patch surrounding. We show that this approach achieves better matches, compared with the use of conventional-size patches, without the need to increase the database-size. Also, the effectiveness of the proposed method is tested on three distinct problems: 1) external natural image denoising; 2) depth image super-resolution; and 3) motion-compensated frame-rate up conversion.

14.
IEEE Trans Image Process ; 25(7): 3044-58, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27214878

RESUMO

In this paper, we propose a novel postprocessing technique for compression-artifact reduction. Our approach is based on posing this task as an inverse problem, with a regularization that leverages on existing state-of-the-art image denoising algorithms. We rely on the recently proposed Plug-and-Play Prior framework, suggesting the solution of general inverse problems via alternating direction method of multipliers, leading to a sequence of Gaussian denoising steps. A key feature in our scheme is a linearization of the compression-decompression process, so as to get a formulation that can be optimized. In addition, we supply a thorough analysis of this linear approximation for several basic compression procedures. The proposed method is suitable for diverse compression techniques that rely on transform coding. In particular, we demonstrate impressive gains in image quality for several leading compression methods-JPEG, JPEG2000, and HEVC.

15.
IEEE Trans Image Process ; 25(1): 249-61, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26571527

RESUMO

Many image restoration algorithms in recent years are based on patch processing. The core idea is to decompose the target image into fully overlapping patches, restore each of them separately, and then merge the results by a plain averaging. This concept has been demonstrated to be highly effective, leading often times to the state-of-the-art results in denoising, inpainting, deblurring, segmentation, and other applications. While the above is indeed effective, this approach has one major flaw: the prior is imposed on intermediate (patch) results, rather than on the final outcome, and this is typically manifested by visual artifacts. The expected patch log likelihood (EPLL) method by Zoran and Weiss was conceived for addressing this very problem. Their algorithm imposes the prior on the patches of the final image, which in turn leads to an iterative restoration of diminishing effect. In this paper, we propose to further extend and improve the EPLL by considering a multi-scale prior. Our algorithm imposes the very same prior on different scale patches extracted from the target image. While all the treated patches are of the same size, their footprint in the destination image varies due to subsampling. Our scheme comes to alleviate another shortcoming existing in patch-based restoration algorithms--the fact that a local (patch-based) prior is serving as a model for a global stochastic phenomenon. We motivate the use of the multi-scale EPLL by restricting ourselves to the simple Gaussian case, comparing the aforementioned algorithms and showing a clear advantage to the proposed method. We then demonstrate our algorithm in the context of image denoising, deblurring, and super-resolution, showing an improvement in performance both visually and quantitatively.

16.
Int J Biomed Imaging ; 2015: 958963, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26199622

RESUMO

In ultrasound imaging, clutter artifacts degrade images and may cause inaccurate diagnosis. In this paper, we apply a method called Morphological Component Analysis (MCA) for sparse signal separation with the objective of reducing such clutter artifacts. The MCA approach assumes that the two signals in the additive mix have each a sparse representation under some dictionary of atoms (a matrix), and separation is achieved by finding these sparse representations. In our work, an adaptive approach is used for learning the dictionary from the echo data. MCA is compared to Singular Value Filtering (SVF), a Principal Component Analysis- (PCA-) based filtering technique, and to a high-pass Finite Impulse Response (FIR) filter. Each filter is applied to a simulated hypoechoic lesion sequence, as well as experimental cardiac ultrasound data. MCA is demonstrated in both cases to outperform the FIR filter and obtain results comparable to the SVF method in terms of contrast-to-noise ratio (CNR). Furthermore, MCA shows a lower impact on tissue sections while removing the clutter artifacts. In experimental heart data, MCA obtains in our experiments clutter mitigation with an average CNR improvement of 1.33 dB.

17.
IEEE Trans Neural Netw Learn Syst ; 26(10): 2234-46, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25706889

RESUMO

We present a linear-time subspace clustering approach that combines sparse representations and bipartite graph modeling. The signals are modeled as drawn from a union of low-dimensional subspaces, and each signal is represented by a sparse combination of basis elements, termed atoms, which form the columns of a dictionary matrix. The sparse representation coefficients are arranged in a sparse affinity matrix, which defines a bipartite graph of two disjoint sets: 1) atoms and 2) signals. Subspace clustering is obtained by applying low-complexity spectral bipartite graph clustering that exploits the small number of atoms for complexity reduction. The complexity of the proposed approach is linear in the number of signals, thus it can rapidly cluster very large data collections. Performance evaluation of face clustering and temporal video segmentation demonstrates comparable clustering accuracies to state-of-the-art at a significantly lower computational load.

18.
IEEE Trans Med Imaging ; 34(7): 1474-1485, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25675453

RESUMO

We propose a supervised machine learning approach for boosting existing signal and image recovery methods and demonstrate its efficacy on example of image reconstruction in computed tomography. Our technique is based on a local nonlinear fusion of several image estimates, all obtained by applying a chosen reconstruction algorithm with different values of its control parameters. Usually such output images have different bias/variance trade-off. The fusion of the images is performed by feed-forward neural network trained on a set of known examples. Numerical experiments show an improvement in reconstruction quality relatively to existing direct and iterative reconstruction methods.

19.
Magn Reson Med ; 74(6): 1587-97, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25483782

RESUMO

PURPOSE: High spatial-temporal four-dimensional imaging with large volume coverage is necessary to accurately capture and characterize liver lesions. Traditionally, parallel imaging and adapted sampling are used toward this goal, but they typically result in a loss of signal to noise. Furthermore, residual under-sampling artifacts can be temporally varying and complicate the quantitative analysis of contrast enhancement curves needed for pharmacokinetic modeling. We propose to overcome these problems using a novel patch-based regularization approach called Patch-based Reconstruction Of Under-sampled Data (PROUD). THEORY AND METHODS: PROUD produces high frame rate image reconstructions by exploiting the strong similarities in spatial patches between successive time frames to overcome the severe k-space under-sampling. To validate PROUD, a numerical liver perfusion phantom was developed to characterize contrast-to-noise ratio (CNR) performance compared with a previously proposed method, TRACER. A second numerical phantom was constructed to evaluate the temporal footprint and lag of PROUD and TRACER reconstructions. Finally, PROUD and TRACER were evaluated in a cohort of five liver donors. RESULTS: In the CNR phantom, PROUD, compared with TRACER, improved peak CNR by 3.66 times while maintaining or improving temporal fidelity. In vivo, PROUD demonstrated an average increase in CNR of 60% compared with TRACER. CONCLUSION: The results presented in this work demonstrate the feasibility of using a combination of patch based image constraints with temporal regularization to provide high SNR, high temporal frame rate and spatial resolution four dimensional imaging.


Assuntos
Artefatos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Fígado/anatomia & histologia , Imageamento por Ressonância Magnética/métodos , Processamento de Sinais Assistido por Computador , Algoritmos , Meios de Contraste , Humanos , Reprodutibilidade dos Testes , Tamanho da Amostra , Sensibilidade e Especificidade , Razão Sinal-Ruído
20.
IEEE Trans Image Process ; 23(12): 5057-69, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25312930

RESUMO

The problem of Poisson denoising appears in various imaging applications, such as low-light photography, medical imaging, and microscopy. In cases of high SNR, several transformations exist so as to convert the Poisson noise into an additive-independent identically distributed. Gaussian noise, for which many effective algorithms are available. However, in a low-SNR regime, these transformations are significantly less accurate, and a strategy that relies directly on the true noise statistics is required. Salmon et al took this route, proposing a patch-based exponential image representation model based on Gaussian mixture model, leading to state-of-the-art results. In this paper, we propose to harness sparse-representation modeling to the image patches, adopting the same exponential idea. Our scheme uses a greedy pursuit with boot-strapping-based stopping condition and dictionary learning within the denoising process. The reconstruction performance of the proposed scheme is competitive with leading methods in high SNR and achieving state-of-the-art results in cases of low SNR.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...