Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Handb Exp Pharmacol ; 283: 35-58, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36811727

RESUMO

The molecular basis of chloride transport varies all along the nephron depending on the tubular segments especially in the apical entry of the cell. The major chloride exit pathway during reabsorption is provided by two kidney-specific ClC chloride channels ClC-Ka and ClC-Kb (encoded by CLCNKA and CLCNKB gene, respectively) corresponding to rodent ClC-K1 and ClC-K2 (encoded by Clcnk1 and Clcnk2). These channels function as dimers and their trafficking to the plasma membrane requires the ancillary protein Barttin (encoded by BSND gene). Genetic inactivating variants of the aforementioned genes lead to renal salt-losing nephropathies with or without deafness highlighting the crucial role of ClC-Ka, ClC-Kb, and Barttin in the renal and inner ear chloride handling. The purpose of this chapter is to summarize the latest knowledge on renal chloride structure peculiarity and to provide some insight on the functional expression on the segments of the nephrons and on the related pathological effects.


Assuntos
Cloretos , Rim , Cloretos/metabolismo , Membrana Celular/metabolismo , Canais de Cloreto/genética , Canais de Cloreto/metabolismo
2.
Pflugers Arch ; 476(4): 533-543, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38110744

RESUMO

Pendrin (SLC26A4) is an anion exchanger from the SLC26 transporter family which is mutated in human patients affected by Pendred syndrome, an autosomal recessive disease characterized by sensoneurinal deafness and hypothyroidism. Pendrin is also expressed in the kidney where it mediates the exchange of internal HCO3- for external Cl- at the apical surface of renal type B and non-A non-B-intercalated cells. Studies using pendrin knockout mice have first revealed that pendrin is essential for renal base excretion. However, subsequent studies have demonstrated that pendrin also controls chloride absorption by the distal nephron and that this mechanism is critical for renal NaCl balance. Furthermore, pendrin has been shown to control vascular volume and ultimately blood pressure. This review summarizes the current knowledge about how pendrin is linking renal acid-base regulation to blood pressure control.


Assuntos
Rim , Néfrons , Animais , Camundongos , Humanos , Pressão Sanguínea/fisiologia , Transportadores de Sulfato , Rim/metabolismo , Néfrons/metabolismo , Cloreto de Sódio , Cloretos/metabolismo , Proteínas de Transporte de Ânions/genética
3.
Sci Transl Med ; 15(720): eabn4214, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37910600

RESUMO

Glycogen storage disease XI, also known as Fanconi-Bickel syndrome (FBS), is a rare autosomal recessive disorder caused by mutations in the SLC2A2 gene that encodes the glucose-facilitated transporter type 2 (GLUT2). Patients develop a life-threatening renal proximal tubule dysfunction for which no treatment is available apart from electrolyte replacement. To investigate the renal pathogenesis of FBS, SLC2A2 expression was ablated in mouse kidney and HK-2 proximal tubule cells. GLUT2Pax8Cre+ mice developed time-dependent glycogen accumulation in proximal tubule cells and recapitulated the renal Fanconi phenotype seen in patients. In vitro suppression of GLUT2 impaired lysosomal autophagy as shown by transcriptomic and biochemical analysis. However, this effect was reversed by exposure to a low glucose concentration, suggesting that GLUT2 facilitates the homeostasis of key cellular pathways in proximal tubule cells by preventing glucose toxicity. To investigate whether targeting proximal tubule glucose influx can limit glycogen accumulation and correct symptoms in vivo, we treated mice with the selective SGLT2 inhibitor dapagliflozin. Dapagliflozin reduced glycogen accumulation and improved metabolic acidosis and phosphaturia in the animals by normalizing the expression of Napi2a and NHE3 transporters. In addition, in a patient with FBS, dapagliflozin was safe, improved serum potassium and phosphate concentrations, and reduced glycogen content in urinary shed cells. Overall, this study provides proof of concept for dapagliflozin as a potentially suitable therapy for FBS.


Assuntos
Síndrome de Fanconi , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Camundongos , Animais , Síndrome de Fanconi/genética , Síndrome de Fanconi/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Glucose , Rim/metabolismo , Glicogênio
6.
J Med Genet ; 59(11): 1035-1043, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35115415

RESUMO

BACKGROUND: Nephrolithiasis (NL) is a complex multifactorial disease affecting up to 10%-20% of the human population and causing a significant burden on public health systems worldwide. It results from a combination of environmental and genetic factors. Hyperoxaluria is a major risk factor for NL. METHODS: We used a whole exome-based approach in a patient with calcium oxalate NL. The effects of the mutation were characterised using cell culture and in silico analyses. RESULTS: We identified a rare heterozygous missense mutation (c.1519C>T/p.R507W) in the SLC26A6 gene that encodes a secretory oxalate transporter. This mutation cosegregated with hyperoxaluria in the family. In vitro characterisation of mutant SLC26A6 demonstrated that Cl--dependent oxalate transport was dramatically reduced because the mutation affects both SLC26A6 transport activity and membrane surface expression. Cotransfection studies demonstrated strong dominant-negative effects of the mutant on the wild-type protein indicating that the phenotype of patients heterozygous for this mutation may be more severe than predicted by haploinsufficiency alone. CONCLUSION: Our study is in line with previous observations made in the mouse showing that SLC26A6 inactivation can cause inherited enteric hyperoxaluria with calcium oxalate NL. Consistent with an enteric form of hyperoxaluria, we observed a beneficial effect of increasing calcium in the patient's diet to reduce urinary oxalate excretion.


Assuntos
Antiporters , Hiperoxalúria , Nefrolitíase , Transportadores de Sulfato , Humanos , Antiporters/genética , Cálcio/metabolismo , Oxalato de Cálcio/metabolismo , Hiperoxalúria/complicações , Hiperoxalúria/genética , Mutação , Nefrolitíase/genética , Nefrolitíase/complicações , Nefrolitíase/metabolismo , Oxalatos/metabolismo , Transportadores de Sulfato/genética
8.
Kidney Int Rep ; 5(3): 348-357, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32154456

RESUMO

INTRODUCTION: Anion exchanger 1 (AE1) (SLC4A1 gene product) is a membrane protein expressed in both kidney and red blood cells (RBCs): it exchanges extracellular bicarbonate (HCO3 -) for intracellular chloride (Cl-) and participates in acid-base homeostasis. AE1 mutations in kidney α-intercalated cells can lead to distal renal tubular acidosis (dRTA). In RBC, AE1 (known as band 3) is also implicated in membrane stability: deletions can cause South Asian ovalocytosis (SAO). METHODS: We retrospectively collected clinical and biological data from patients harboring dRTA due to a SLC4A1 mutation and analyzed HCO3 - and Cl- transports (by stopped-flow spectrophotometry) and expression (by flow cytometry, fluorescence activated cell sorting, and Coomassie blue staining) in RBCs, as well as RBC membrane stability (ektacytometry). RESULTS: Fifteen patients were included. All experience nephrolithiasis and/or nephrocalcinosis, 2 had SAO and dRTA (dRTA SAO+), 13 dominant dRTA (dRTA SAO-). The latter did not exert specific RBC membrane anomalies. Both HCO3 - and Cl- transports were lower in patients with dRTA SAO+ than in those with dRTA SAO- or controls. Using 3 different extracellular probes, we report a decreased expression (by 52%, P < 0.05) in dRTA SAO+ patients by fluorescence activated cell sorting, whereas total amount of protein was not affected. CONCLUSION: Band 3 transport function and expression in RBCs from dRTA SAO- patients is normal. However, in SAO RBCs, impaired conformation of AE1/band 3 corresponds to an impaired function. Thus, the driver of acid-base defect during dominant dRTA is probably an impaired membrane expression.

9.
Kidney Int ; 97(3): 452-455, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32087886

RESUMO

Young onset distal tubular acidosis is a rare genetic disorder that can lead, if untreated, to many complications. Mutations in few genes account for almost half of the cases, whereas the molecular mechanisms accounting for the remaining cases are still unknown. The present study reports the use of whole-exome sequencing to identify new dRTA-causing genes and demonstrates that inactivating mutations in the ATP6V1C2 gene impair renal proton pump function.


Assuntos
Acidose Tubular Renal , ATPases Vacuolares Próton-Translocadoras/genética , Humanos , Mutação , Sequenciamento do Exoma
10.
Kidney Int ; 94(3): 514-523, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30146013

RESUMO

Pseudohypoaldosteronism type II (PHAII) is a genetic disease characterized by association of hyperkalemia, hyperchloremic metabolic acidosis, hypertension, low renin, and high sensitivity to thiazide diuretics. It is caused by mutations in the WNK1, WNK4, KLHL3 or CUL3 gene. There is strong evidence that excessive sodium chloride reabsorption by the sodium chloride cotransporter NCC in the distal convoluted tubule is involved. WNK4 is expressed not only in distal convoluted tubule cells but also in ß-intercalated cells of the cortical collecting duct. These latter cells exchange intracellular bicarbonate for external chloride through pendrin, and therefore, account for renal base excretion. However, these cells can also mediate thiazide-sensitive sodium chloride absorption when the pendrin-dependent apical chloride influx is coupled to apical sodium influx by the sodium-driven chloride/bicarbonate exchanger. Here we determine whether this system is involved in the pathogenesis of PHAII. Renal pendrin activity was markedly increased in a mouse model carrying a WNK4 missense mutation (Q562E) previously identified in patients with PHAII. The upregulation of pendrin led to an increase in thiazide-sensitive sodium chloride absorption by the cortical collecting duct, and it caused metabolic acidosis. The function of apical potassium channels was altered in this model, and hyperkalemia was fully corrected by pendrin genetic ablation. Thus, we demonstrate an important contribution of pendrin in renal regulation of sodium chloride, potassium and acid-base homeostasis and in the pathophysiology of PHAII. Furthermore, we identify renal distal bicarbonate secretion as a novel mechanism of renal tubular acidosis.


Assuntos
Acidose Tubular Renal/fisiopatologia , Túbulos Renais Coletores/fisiopatologia , Proteínas Serina-Treonina Quinases/genética , Pseudo-Hipoaldosteronismo/complicações , Transportadores de Sulfato/metabolismo , Acidose Tubular Renal/sangue , Acidose Tubular Renal/etiologia , Animais , Modelos Animais de Doenças , Técnicas de Inativação de Genes , Humanos , Túbulos Renais Coletores/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação de Sentido Incorreto , Potássio/sangue , Potássio/metabolismo , Pseudo-Hipoaldosteronismo/genética , Pseudo-Hipoaldosteronismo/fisiopatologia , Eliminação Renal , Cloreto de Sódio/metabolismo , Simportadores de Sódio-Bicarbonato/metabolismo , Transportadores de Sulfato/genética , Regulação para Cima
11.
Sci Rep ; 7(1): 7249, 2017 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-28775266

RESUMO

The human ClC-Kb channel plays a key role in exporting chloride ions from the cytosol and is known to be involved in Bartter syndrome type 3 when its permeation capacity is decreased. The ClC-Kb channel has been recently proposed as a potential therapeutic target to treat hypertension. In order to gain new insights into the sequence-structure-function relationships of this channel, to investigate possible impacts of amino-acid substitutions, and to design novel inhibitors, we first built a structural model of the human ClC-Kb channel using comparative modeling strategies. We combined in silico and in vitro techniques to analyze amino acids involved in the chloride ion pathway as well as to rationalize the possible role of several clinically observed mutations leading to the Bartter syndrome type 3. Virtual screening and drug repositioning computations were then carried out. We identified six novel molecules, including 2 approved drugs, diflusinal and loperamide, with Kd values in the low micromolar range, that block the human ClC-Kb channel and that could be used as starting point to design novel chemical probes for this potential therapeutic target.


Assuntos
Canais de Cloreto/química , Modelos Moleculares , Relação Quantitativa Estrutura-Atividade , Sequência de Aminoácidos , Animais , Bovinos , Canais de Cloreto/antagonistas & inibidores , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Cloretos/química , Cloretos/metabolismo , Suscetibilidade a Doenças , Avaliação Pré-Clínica de Medicamentos , Humanos , Ativação do Canal Iônico , Potenciais da Membrana , Estrutura Molecular , Mutação , Conformação Proteica
12.
Transpl Int ; 30(8): 799-806, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28152216

RESUMO

Two end-stage renal disease (ESRD) risk calculators were recently developed by Grams et al., and Ibrahim et al. to calculate ESRD risk before donation among living kidney donors. However, those calculators have never been studied among potential donors for whom donation was refused due to medical contraindications and compared to a group of donors. We compared 15-year and lifetime ESRD risk of donors and nondonors due to medical cause as estimated by those two calculators. Nondonors due to medical cause (n = 27) had a significantly higher 15-year ESRD risk compared to donors (n = 288) with both calculators (0.25 vs. 0.14, P < 0.001 for that developed by Grams et al. and 2.21 vs. 1.43, P = 0.002 for that developed by Ibrahim et al.). On the contrary, lifetime ESRD risk was not significantly different between the two groups. At both times (15 years and lifetime), we observed a significant overlap of ESRD risk between the two groups. ESRD risk calculators could be complementary to standard screening strategy but cannot be used alone to accept or decline donation.


Assuntos
Falência Renal Crônica/etiologia , Transplante de Rim , Doadores Vivos , Nefrectomia/efeitos adversos , Adulto , Contraindicações de Procedimentos , Seleção do Doador , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Risco , Coleta de Tecidos e Órgãos/efeitos adversos , Obtenção de Tecidos e Órgãos
13.
Nephrol Dial Transplant ; 32(7): 1137-1145, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28064162

RESUMO

BACKGROUND: Pendrin, the chloride/bicarbonate exchanger of ß-intercalated cells of the renal connecting tubule and the collecting duct, plays a key role in NaCl reabsorption by the distal nephron. Therefore, pendrin may be important for the control of extracellular fluid volume and blood pressure. METHODS: Here, we have used a genetic mouse model in which the expression of pendrin can be switched-on in vivo by the administration of doxycycline. Pendrin can also be rapidly removed when doxycycline administration is discontinued. Therefore, our genetic strategy allows us to test selectively the acute effects of loss of pendrin function. RESULTS: We show that acute loss of pendrin leads to a significant decrease of blood pressure. In addition, acute ablation of pendrin did not alter significantly the acid-base status or blood K + concentration. CONCLUSION: By using a transgenic mouse model, avoiding off-target effects related to pharmacological compounds, this study suggests that pendrin could be a novel target to treat hypertension.


Assuntos
Proteínas de Transporte de Ânions/fisiologia , Pressão Sanguínea/fisiologia , Hipertensão/etiologia , Animais , Hipertensão/metabolismo , Hipertensão/patologia , Masculino , Camundongos , Camundongos Transgênicos , Transportadores de Sulfato
14.
J Am Soc Nephrol ; 28(1): 209-217, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27335120

RESUMO

Chloride transport by the renal tubule is critical for blood pressure (BP), acid-base, and potassium homeostasis. Chloride uptake from the urinary fluid is mediated by various apical transporters, whereas basolateral chloride exit is thought to be mediated by ClC-Ka/K1 and ClC-Kb/K2, two chloride channels from the ClC family, or by KCl cotransporters from the SLC12 gene family. Nevertheless, the localization and role of ClC-K channels is not fully resolved. Because inactivating mutations in ClC-Kb/K2 cause Bartter syndrome, a disease that mimics the effects of the loop diuretic furosemide, ClC-Kb/K2 is assumed to have a critical role in salt handling by the thick ascending limb. To dissect the role of this channel in detail, we generated a mouse model with a targeted disruption of the murine ortholog ClC-K2. Mutant mice developed a Bartter syndrome phenotype, characterized by renal salt loss, marked hypokalemia, and metabolic alkalosis. Patch-clamp analysis of tubules isolated from knockout (KO) mice suggested that ClC-K2 is the main basolateral chloride channel in the thick ascending limb and in the aldosterone-sensitive distal nephron. Accordingly, ClC-K2 KO mice did not exhibit the natriuretic response to furosemide and exhibited a severely blunted response to thiazide. We conclude that ClC-Kb/K2 is critical for salt absorption not only by the thick ascending limb, but also by the distal convoluted tubule.


Assuntos
Proteínas de Transporte de Ânions/fisiologia , Canais de Cloreto/fisiologia , Néfrons/metabolismo , Cloreto de Sódio/metabolismo , Animais , Diuréticos/farmacologia , Furosemida/farmacologia , Camundongos , Camundongos Knockout , Néfrons/efeitos dos fármacos , Inibidores de Simportadores de Cloreto de Sódio/farmacologia
15.
Eur Radiol ; 27(2): 651-659, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27221559

RESUMO

OBJECTIVES: Screening of living kidney donors may require scintigraphy to split glomerular filtration rate (GFR). To determine the usefulness of computed tomography (CT) to split GFR, we compared scintigraphy-split GFR to CT-split GFR. We evaluated CT-split GFR as a screening test to detect scintigraphy-split GFR lower than 40 mL/min/1.73 m2/kidney. METHODS: This was a monocentric retrospective study on 346 potential living donors who had GFR measurement, renal scintigraphy, and CT. We predicted GFR for each kidney by splitting GFR using the following formula: Volume-split GFR for a given kidney = measured GFR*[volume of this kidney/(volume of this kidney + volume of the opposite kidney)]. The same formula was used for length-split GFR. We compared length- and volume-split GFR to scintigraphy-split GFR at donation and with a 4-year follow-up. RESULTS: A better correlation was observed between length-split GFR and scintigraphy-split GFR (r = 0.92) than between volume-split GFR and scintigraphy-split GFR (r = 0.89). A length-split GFR threshold of 45 mL/min/1.73 m2/kidney had a sensitivity of 100 % and a specificity of 75 % to detect scintigraphy-split GFR less than 40 mL/min/1.73 m2/kidney. Both techniques with their respective thresholds detected living donors with similar eGFR evolution during follow-up. CONCLUSION: Length-split GFR can be used to detect patients requiring scintigraphy. KEY POINTS: • Excellent correlation between kidney length and scintigraphy predicted GFR • Kidney length screening detects all donors with GFR lower than 40 mL/min/1.73 m 2 • Kidney length screening can replace scintigraphy screening.


Assuntos
Taxa de Filtração Glomerular/fisiologia , Transplante de Rim , Rim/diagnóstico por imagem , Rim/fisiologia , Doadores Vivos , Tomografia Computadorizada por Raios X/métodos , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Cintilografia , Estudos Retrospectivos , Sensibilidade e Especificidade
16.
J Am Soc Nephrol ; 28(1): 130-139, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27151921

RESUMO

We recently described a novel thiazide-sensitive electroneutral NaCl transport mechanism resulting from the parallel operation of the Cl-/HCO3- exchanger pendrin and the Na+-driven Cl-/2HCO3- exchanger (NDCBE) in ß-intercalated cells of the collecting duct. Although a role for pendrin in maintaining Na+ balance, intravascular volume, and BP is well supported, there is no in vivo evidence for the role of NDCBE in maintaining Na+ balance. Here, we show that deletion of NDCBE in mice caused only subtle perturbations of Na+ homeostasis and provide evidence that the Na+/Cl- cotransporter (NCC) compensated for the inactivation of NDCBE. To unmask the role of NDCBE, we generated Ndcbe/Ncc double-knockout (dKO) mice. On a normal salt diet, dKO and single-knockout mice exhibited similar activation of the renin-angiotensin-aldosterone system, whereas only dKO mice displayed a lower blood K+ concentration. Furthermore, dKO mice displayed upregulation of the epithelial sodium channel (ENaC) and the Ca2+-activated K+ channel BKCa. During NaCl depletion, only dKO mice developed marked intravascular volume contraction, despite dramatically increased renin activity. Notably, the increase in aldosterone levels expected on NaCl depletion was attenuated in dKO mice, and single-knockout and dKO mice had similar blood K+ concentrations under this condition. In conclusion, NDCBE is necessary for maintaining sodium balance and intravascular volume during salt depletion or NCC inactivation in mice. Furthermore, NDCBE has an important role in the prevention of hypokalemia. Because NCC and NDCBE are both thiazide targets, the combined inhibition of NCC and the NDCBE/pendrin system may explain thiazide-induced hypokalemia in some patients.


Assuntos
Volume Sanguíneo , Antiportadores de Cloreto-Bicarbonato/fisiologia , Hipopotassemia/etiologia , Animais , Camundongos , Camundongos Knockout , Regulação para Cima
17.
J Am Soc Nephrol ; 28(5): 1507-1520, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27932475

RESUMO

Distal nephron acid secretion is mediated by highly specialized type A intercalated cells (A-ICs), which contain vacuolar H+-ATPase (V-type ATPase)-rich vesicles that fuse with the apical plasma membrane on demand. Intracellular bicarbonate generated by luminal H+ secretion is removed by the basolateral anion-exchanger AE1. Chronically reduced renal acid excretion in distal renal tubular acidosis (dRTA) may lead to nephrocalcinosis and renal failure. Studies in MDCK monolayers led to the proposal of a dominant-negative trafficking mechanism to explain AE1-associated dominant dRTA. To test this hypothesis in vivo, we generated an Ae1 R607H knockin mouse, which corresponds to the most common dominant dRTA mutation in human AE1, R589H. Compared with wild-type mice, heterozygous and homozygous R607H knockin mice displayed incomplete dRTA characterized by compensatory upregulation of the Na+/HCO3- cotransporter NBCn1. Red blood cell Ae1-mediated anion-exchange activity and surface polypeptide expression did not change. Mutant mice expressed far less Ae1 in A-ICs, but basolateral targeting of the mutant protein was preserved. Notably, mutant mice also exhibited reduced expression of V-type ATPase and compromised targeting of this proton pump to the plasma membrane upon acid challenge. Accumulation of p62- and ubiquitin-positive material in A-ICs of knockin mice suggested a defect in the degradative pathway, which may explain the observed loss of A-ICs. R607H knockin did not affect type B intercalated cells. We propose that reduced basolateral anion-exchange activity in A-ICs inhibits trafficking and regulation of V-type ATPase, compromising luminal H+ secretion and possibly lysosomal acidification.


Assuntos
Acidose Tubular Renal/enzimologia , Proteína 1 de Troca de Ânion do Eritrócito/fisiologia , Túbulos Renais Coletores/citologia , Túbulos Renais Coletores/enzimologia , ATPases Vacuolares Próton-Translocadoras/fisiologia , Animais , Proteína 1 de Troca de Ânion do Eritrócito/genética , Masculino , Camundongos , Modelos Biológicos
18.
Kidney Dis (Basel) ; 3(3): 98-105, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29344504

RESUMO

BACKGROUND: Distal renal tubular acidosis (dRTA) is characterized by an impairment of the urinary acidification process in the distal nephron. Complete or incomplete metabolic acidosis coupled with inappropriately alkaline urine are the hallmarks of this condition. Genetic forms of dRTA are caused by loss of function mutations of either SLC4A1, encoding the AE1 anion exchanger, or ATP6V1B1 and ATP6V0A4, encoding for the B1 and a4 subunits of the vH+ATPase, respectively. These genes are crucial for the function of A-type intercalated cells (A-IC) of the distal nephron. SUMMARY: Alterations of acid-base homeostasis are variably associated with hypokalemia, hypercalciuria, nephrocalcinosis or nephrolithiasis, and a salt-losing phenotype. Here we report the diagnostic test and the underlying physiopathological mechanisms. The molecular mechanisms identified so far can explain the defect in acid secretion, but do not explain all clinical features. We review the latest experimental findings on the pathogenesis of dRTA, reporting mechanisms that are instrumental for the clinician and potentially inspiring a novel therapeutic strategy. KEY MESSAGE: Primary dRTA is usually intended as a single-cell disease because the A-IC are mainly affected. However, novel evidence shows that different cell types of the nephron may contribute to the signs and symptoms, moving the focus from a single-cell towards a renal disease.

19.
Front Physiol ; 8: 1108, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29354070

RESUMO

Carbonic anhydrase II (CAII) is expressed along the nephron where it interacts with a number of transport proteins augmenting their activity. Aquaporin-1 (AQP1) interacts with CAII to increase water flux through the water channel. Both CAII and aquaporin-1 are expressed in the thin descending limb (TDL); however, the physiological role of a CAII-AQP1 interaction in this nephron segment is not known. To determine if CAII was required for urinary concentration, we studied water handling in CAII-deficient mice. CAII-deficient mice demonstrate polyuria and polydipsia as well as an alkaline urine and bicarbonaturia, consistent with a type III renal tubular acidosis. Natriuresis and hypercalciuria cause polyuria, however, CAII-deficient mice did not have increased urinary sodium nor calcium excretion. Further examination revealed dilute urine in the CAII-deficient mice. Urinary concentration remained reduced in CAII-deficient mice relative to wild-type animals even after water deprivation. The renal expression and localization by light microscopy of NKCC2 and aquaporin-2 was not altered. However, CAII-deficient mice had increased renal AQP1 expression. CAII associates with and increases water flux through aquaporin-1. Water flux through aquaporin-1 in the TDL of the loop of Henle is essential to the concentration of urine, as this is required to generate a concentrated medullary interstitium. We therefore measured cortical and medullary interstitial concentration in wild-type and CAII-deficient mice. Mice lacking CAII had equivalent cortical interstitial osmolarity to wild-type mice: however, they had reduced medullary interstitial osmolarity. We propose therefore that reduced water flux through aquaporin-1 in the TDL in the absence of CAII prevents the generation of a maximally concentrated medullary interstitium. This, in turn, limits urinary concentration in CAII deficient mice.

20.
Am J Physiol Renal Physiol ; 311(5): F901-F906, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27582101

RESUMO

The distal nephron is a heterogeneous part of the nephron composed by six different cell types, forming the epithelium of the distal convoluted (DCT), connecting, and collecting duct. To dissect the function of these cells, knockout models specific for their unique cell marker have been created. However, since this part of the nephron develops at the border between the ureteric bud and the metanephric mesenchyme, the specificity of the single cell markers has been recently questioned. Here, by mapping the fate of the aquaporin 2 (AQP2) and Na+-Cl- cotransporter (NCC)-positive cells using transgenic mouse lines expressing the yellow fluorescent protein fluorescent marker, we showed that the origin of the distal nephron is extremely composite. Indeed, AQP2-expressing precursor results give rise not only to the principal cells, but also to some of the A- and B-type intercalated cells and even to cells of the DCT. On the other hand, some principal cells and B-type intercalated cells can develop from NCC-expressing precursors. In conclusion, these results demonstrate that the origin of different cell types in the distal nephron is not as clearly defined as originally thought. Importantly, they highlight the fact that knocking out a gene encoding for a selective functional marker in the adult does not guarantee cell specificity during the overall kidney development. Tools allowing not only cell-specific but also time-controlled recombination will be useful in this sense.


Assuntos
Túbulos Renais Coletores/metabolismo , Túbulos Renais Distais/metabolismo , Néfrons/metabolismo , Animais , Aquaporina 2/metabolismo , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Simportadores de Cloreto de Sódio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...