Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 12: 670928, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276604

RESUMO

Rhodococcus equi ATCC13557 was selected as a model organism to study oestrogen degradation based on its previous ability to degrade 17α-ethinylestradiol (EE2). Biodegradation experiments revealed that R. equi ATCC13557 was unable to metabolise EE2. However, it was able to metabolise E2 with the major metabolite being E1 with no further degradation of E1. However, the conversion of E2 into E1 was incomplete, with 11.2 and 50.6% of E2 degraded in mixed (E1-E2-EE2) and E2-only conditions, respectively. Therefore, the metabolic pathway of E2 degradation by R. equi ATCC13557 may have two possible pathways. The genome of R. equi ATCC13557 was sequenced, assembled, and mapped for the first time. The genome analysis allowed the identification of genes possibly responsible for the observed biodegradation characteristics of R. equi ATCC13557. Several genes within R. equi ATCC13557 are similar, but not identical in sequence, to those identified within the genomes of other oestrogen degrading bacteria, including Pseudomonas putida strain SJTE-1 and Sphingomonas strain KC8. Homologous gene sequences coding for enzymes potentially involved in oestrogen degradation, most commonly a cytochrome P450 monooxygenase (oecB), extradiol dioxygenase (oecC), and 17ß-hydroxysteroid dehydrogenase (oecA), were identified within the genome of R. equi ATCC13557. These searches also revealed a gene cluster potentially coding for enzymes involved in steroid/oestrogen degradation; 3-carboxyethylcatechol 2,3-dioxygenase, 2-hydroxymuconic semialdehyde hydrolase, 3-alpha-(or 20-beta)-hydroxysteroid dehydrogenase, 3-(3-hydroxy-phenyl)propionate hydroxylase, cytochrome P450 monooxygenase, and 3-oxosteroid 1-dehydrogenase. Further, the searches revealed steroid hormone metabolism gene clusters from the 9, 10-seco pathway, therefore R. equi ATCC13557 also has the potential to metabolise other steroid hormones such as cholesterol.

2.
Nat Commun ; 11(1): 4149, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32811832

RESUMO

Many bacteria can form wall-deficient variants, or L-forms, that divide by a simple mechanism that does not require the FtsZ-based cell division machinery. Here, we use microfluidic systems to probe the growth, chromosome cycle and division mechanism of Bacillus subtilis L-forms. We find that forcing cells into a narrow linear configuration greatly improves the efficiency of cell growth and chromosome segregation. This reinforces the view that L-form division is driven by an excess accumulation of surface area over volume. Cell geometry also plays a dominant role in controlling the relative positions and movement of segregating chromosomes. Furthermore, the presence of the nucleoid appears to influence division both via a cell volume effect and by nucleoid occlusion, even in the absence of FtsZ. Our results emphasise the importance of geometric effects for a range of crucial cell functions, and are of relevance for efforts to develop artificial or minimal cell systems.


Assuntos
Bacillus subtilis/crescimento & desenvolvimento , Divisão Celular/fisiologia , Segregação de Cromossomos/fisiologia , Formas L/crescimento & desenvolvimento , Dispositivos Lab-On-A-Chip/microbiologia , Bacillus subtilis/citologia , Bacillus subtilis/fisiologia , Parede Celular/fisiologia , Cromossomos Bacterianos/metabolismo , Cromossomos Bacterianos/fisiologia , Formas L/citologia , Formas L/fisiologia , Modelos Biológicos
3.
NPJ Biofilms Microbiomes ; 6(1): 19, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32286319

RESUMO

Bacterial biofilms in natural and artificial environments perform a wide array of beneficial or detrimental functions and exhibit resistance to physical as well as chemical perturbations. In dynamic environments, where periodic or aperiodic flows over surfaces are involved, biofilms can be subjected to large shear forces. The ability to withstand these forces, which is often attributed to the resilience of the extracellular matrix. This attribute of the extracellular matrix is referred to as viscoelasticity and is a result of self-assembly and cross-linking of multiple polymeric components that are secreted by the microbes. We aim to understand the viscoelastic characteristic of biofilms subjected to large shear forces by performing Large Amplitude Oscillatory Shear (LAOS) experiments on four species of bacterial biofilms: Bacillus subtilis, Comamonas denitrificans, Pseudomonas fluorescens and Pseudomonas aeruginosa. We find that nonlinear viscoelastic measures such as intracycle strain stiffening and intracycle shear thickening for each of the tested species, exhibit subtle or distinct differences in the plot of strain amplitude versus frequency (Pipkin diagram). The biofilms also exhibit variability in the onset of nonlinear behaviour and energy dissipation characteristics, which could be a result of heterogeneity of the extracellular matrix constituents of the different biofilms. The results provide insight into the nonlinear rheological behaviour of biofilms as they are subjected to large strains or strain rates; a situation that is commonly encountered in nature, but rarely investigated.


Assuntos
Fenômenos Fisiológicos Bacterianos , Biofilmes/crescimento & desenvolvimento , Bacillus subtilis/fisiologia , Comamonas/fisiologia , Matriz Extracelular/metabolismo , Pseudomonas aeruginosa/fisiologia , Pseudomonas fluorescens/fisiologia , Reologia , Viscosidade
4.
Environ Microbiol ; 22(5): 1784-1800, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31840396

RESUMO

Sulfur-oxidizing Sulfurimonas spp. are widespread in sediments, hydrothermal vent fields, aquifers and subsurface environments such as oil reservoirs where they play an important role in the sulfur cycle. We determined the genome sequence of the oil field isolate Sulfurimonas sp. strain CVO and compared its gene expression during nitrate-dependent sulfide oxidation to the coastal sediment isolate Sulfurimonas denitrificans. Formation of elemental sulfur (S0 ) and high expression of sulfide quinone oxidoreductase (SQR) genes indicates that sulfide oxidation in both strains is mediated by SQR. Subsequent oxidation of S0 was achieved by the sulfur oxidation enzyme complex (SOX). In the coastal S. denitrificans, the genes are arranged and expressed as two clusters: soxXY1 Z1 AB and soxCDY2 Z2 H, and sulfate was the sole metabolic end product. By contrast, the oil field strain CVO has only the soxCDY2 Z2 H cluster and not soxXY1 Z1 AB. Despite the absence of the soxXY1 Z1 AB cluster, strain CVO oxidized S0 to thiosulfate and sulfate, demonstrating that soxCDY2 Z2 H genes alone are sufficient for S0 oxidation in Sulfurimonas spp. and that thiosulfate is an additional metabolic end product. Screening of publicly available metagenomes revealed that Sulfurimonas spp. with only the soxCDY2 Z2 H cluster are widespread suggesting this mechanism of thiosulfate formation is environmentally significant.


Assuntos
Helicobacteraceae/metabolismo , Quinona Redutases/metabolismo , Tiossulfatos/metabolismo , Helicobacteraceae/isolamento & purificação , Nitratos/metabolismo , Campos de Petróleo e Gás/microbiologia , Oxirredução , Quinona Redutases/genética , Sulfatos/metabolismo , Sulfetos/metabolismo , Enxofre/metabolismo
5.
J Bacteriol ; 201(18)2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31182499

RESUMO

Biofilms occur in a broad range of environments under heterogeneous physicochemical conditions, such as in bioremediation plants, on surfaces of biomedical implants, and in the lungs of cystic fibrosis patients. In these scenarios, biofilms are subjected to shear forces, but the mechanical integrity of these aggregates often prevents their disruption or dispersal. Biofilms' physical robustness is the result of the multiple biopolymers secreted by constituent microbial cells which are also responsible for numerous biological functions. A better understanding of the role of these biopolymers and their response to dynamic forces is therefore crucial for understanding the interplay between biofilm structure and function. In this paper, we review experimental techniques in rheology, which help quantify the viscoelasticity of biofilms, and modeling approaches from soft matter physics that can assist our understanding of the rheological properties. We describe how these methods could be combined with synthetic biology approaches to control and investigate the effects of secreted polymers on the physical properties of biofilms. We argue that without an integrated approach of the three disciplines, the links between genetics, composition, and interaction of matrix biopolymers and the viscoelastic properties of biofilms will be much harder to uncover.


Assuntos
Fenômenos Fisiológicos Bacterianos , Biofilmes/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fenômenos Biomecânicos , Regulação Bacteriana da Expressão Gênica
6.
Environ Technol ; 40(15): 1969-1976, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29400147

RESUMO

Waste stabilisation ponds (WSPs) are widely used across the world as a passive wastewater treatment for domestic wastewaters, but little is known about their ecology, especially their phototrophic communities. This study uses molecular methods and flow cytometry to assess the cyanobacterial and eukaryotic communities longitudinally throughout two systems, one treating domestic wastewater and the other mixed industrial/domestic wastewaters. More variation was seen between the systems than between different stages in the treatment processes for both eukaryotic and cyanobacterial communities. Chlorella species and Planktophrix cyanobacteria dominated both treatment systems. Arthrospira cyanobacteria were detected only in the industrial/domestic system. The balance between non-photosynthetic and photosynthetic organisms is rarely considered, though both play vital roles in WSP functioning. Flow cytometry showed that the facultative and first maturation pond in the industrial system contained a lower proportion of photosynthetic organisms compared to the domestic system. This is reflected in the species richness data and low dissolved oxygen levels detected. All data indicated that both systems are significantly different from one another and that variation longitudinally throughout the systems is lower. A more systematic study is needed to determine if it is the wastewater source rather than the initial inoculum that drives community composition.


Assuntos
Chlorella , Microalgas , Lagoas , Eliminação de Resíduos Líquidos , Águas Residuárias
7.
Water Res ; 46(16): 5355-64, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22853974

RESUMO

The use of molecular methods to investigate microalgal communities of natural and engineered freshwater resources is in its infancy, with the majority of previous studies carried out by microscopy. Inefficient or differential DNA extraction of microalgal community members can lead to bias in downstream community analysis. Three commercially available DNA extraction kits have been tested on a range of pure culture freshwater algal species with diverse cell walls and mixed algal cultures taken from eutrophic waste stabilization ponds (WSP). DNA yield and quality were evaluated, along with DNA suitability for amplification of 18S rRNA gene fragments by polymerase chain reaction (PCR). QiagenDNeasy(®) Blood and Tissue kit (QBT), was found to give the highest DNA yields and quality. Denaturant Gradient Gel Electrophoresis (DGGE) was used to assess the diversity of communities from which DNA was extracted. No significant differences were found among kits when assessing diversity. QBT is recommended for use with WSP samples, a conclusion confirmed by further testing on communities from two tropical WSP systems. The fixation of microalgal samples with ethanol prior to DNA extraction was found to reduce yields as well as diversity and is not recommended.


Assuntos
Técnicas de Química Analítica/métodos , DNA/isolamento & purificação , Água Doce/microbiologia , Microalgas/genética , Kit de Reagentes para Diagnóstico , Eletroforese em Gel de Gradiente Desnaturante , Reação em Cadeia da Polimerase , RNA Ribossômico 18S/genética , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...