Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Funct Integr Genomics ; 23(2): 141, 2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37118364

RESUMO

Artemisia annua L. is a medicinal plant valued for its ability to produce artemisinin, a molecule used to treat malaria. Plant nutrients, especially phosphorus (P), can potentially influence plant biomass and secondary metabolite production. Our work aimed to explore the genetic and metabolic response of A. annua to hardly soluble aluminum phosphate (AlPO4, AlP), using soluble monopotassium phosphate (KH2PO4, KP) as a control. Liquid chromatography-mass spectrometry (LC-MS) was used to analyze artemisinin. RNA sequencing, gene ontology (GO), and the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were applied to analyze the differentially expressed genes (DEGs) under poor P conditions. Results showed a significant reduction in plant growth parameters, such as plant height, stem diameter, number of leaves, leaf areas, and total biomass of A. annua. Conversely, LC-MS analysis revealed a significant increase in artemisinin concentration under the AlP compared to the KP. Transcriptome analysis revealed 762 differentially expressed genes (DEGs) between the AlP and the KP. GH3, SAUR, CRE1, and PYL, all involved in plant hormone signal transduction, showed differential expression. Furthermore, despite the downregulation of HMGR in the artemisinin biosynthesis pathway, the majority of genes (ACAT, FPS, CYP71AV1, and ALDH1) were upregulated, resulting in increased artemisinin accumulation in the AlP. In addition, 12 transcription factors, including GATA and MYB, were upregulated in response to AlP, confirming their importance in regulating artemisinin biosynthesis. Overall, our findings could contribute to a better understanding the parallel transcriptional regulation of plant hormone transduction and artemisinin biosynthesis in A. annua L. in response to hardly soluble phosphorus fertilizer.


Assuntos
Artemisia annua , Artemisininas , Artemisia annua/genética , Artemisia annua/química , Artemisia annua/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Artemisininas/química , Artemisininas/metabolismo , Fosfatos/metabolismo , Análise de Sequência de RNA , Fósforo/metabolismo
2.
Saudi J Biol Sci ; 29(4): 2163-2172, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35531193

RESUMO

Potato plants and their tubers in Egypt are affected by one of the most renowned soil-borne pathogen, Ralstonia solanacearum, that caused brown rot in potato tubers and wilt in plants. There is no efficient therapeutic bactericide so; control of bacterial wilt is very rough. The study investigated three different concentrations of seven essential plant oils under in vitro and in vivo conditions as a result of their effects on Ralstonia solanacearum growth and their possibility use as potato seed pieces dressing for controlling bacterial wilt disease incidence. In vitro, anise oil at the three tested different concentrations (0.04, 0.07, and 0.14% vol/vol) was the most effective one inhibiting the growth of T4 and W9 isolates of Ralstonia solanacearum then pursued by thyme, lemongrass, and clove oils. On the other hand, rocket oil at the tested concentration was the least effective one followed by fennel oil. However, wheat germ oil was not completely effective. In vivo, experiment revealed that anise oil at the three concentrations significantly reduced disease incidence and severity in sponta and hermes potato cultivars and their effect was associated with increase of peroxidase, polyphenoloxidase, phenols and the foliar fresh weight of treated plants as well as the weight of tubers/plant followed by thyme and lemongrass oils compared to the infected untreated control. Morphological differences in bacterial cell structure have been observed using a transmission electron microscope (TEM). Anise oil at higher concentration caused of cell wall rupture and degraded cellular components.

3.
Front Plant Sci ; 13: 879366, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35615131

RESUMO

An increase in temperature and extreme heat stress is responsible for the global reduction in maize yield. Heat stress affects the integrity of the plasma membrane functioning of mitochondria and chloroplast, which further results in the over-accumulation of reactive oxygen species. The activation of a signal cascade subsequently induces the transcription of heat shock proteins. The denaturation and accumulation of misfolded or unfolded proteins generate cell toxicity, leading to death. Therefore, developing maize cultivars with significant heat tolerance is urgently required. Despite the explored molecular mechanism underlying heat stress response in some plant species, the precise genetic engineering of maize is required to develop high heat-tolerant varieties. Several agronomic management practices, such as soil and nutrient management, plantation rate, timing, crop rotation, and irrigation, are beneficial along with the advanced molecular strategies to counter the elevated heat stress experienced by maize. This review summarizes heat stress sensing, induction of signaling cascade, symptoms, heat stress-related genes, the molecular feature of maize response, and approaches used in developing heat-tolerant maize varieties.

4.
Genes (Basel) ; 14(1)2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36672774

RESUMO

Wheat (Triticum aestivum L.) is a key food crop, accounting for approximately 765 million tons produced worldwide. The present study evaluated 16 wheat genotypes using 19 morphological and phenological traits, 16 molecular markers (Inter Simple Sequence Repeats and Start Codon Targeted; ISSR and SCoT) and rbcL and matK plastid gene barcoding. The 16 wheat genotypes showed significant genetic variation using the markers assayed. Cell plot of phenological parameters revealed significant differences among the 16-day-old seedlings of wheat genotypes at Z1.1 growth stage. Collectively, W2 genotype had the lowest shoot length (SL), length of first internodes (LFI) and leaf area (LA) values, while W8 genotype had the highest diameter of first internode (DFI) and LA values. Furthermore, W7 genotype had the maximum plant biomass (PB) and leaf width (LW) values. Geometric models grouped wheat kernels into "rounded" and "nearly elongated". Estimates of heritability (H2) for these morphological characters ranged from 4.93 to 100%. The highest H2 values were recorded for root number (RN) (100%) followed by SL (88.72%), LFI (88.30%), LA (87.76%) and Feret diameter (86.68%), while the lowest H2 value was recorded for DFI (4.93%). Furthermore, highly significant genotypic and phenotypic correlations were also observed among those traits. Reproducible fingerprinting profiles and high levels of polymorphism (PPB%) of SCoT (95.46%) and ISSR (82.41%) were recorded, indicating that they are effective tools for detecting genetic variation levels among wheat genotypes. The informativeness of markers were measured through estimation of polymorphic information content (PIC), resolving power (RP) and marker index (MI). The RP and PPB% of SCoT were significantly higher compared to those of ISSR. Comparatively, the two molecular markers were effective for studying genetic diversity among wheat genotypes, but SCoT markers were more informative. Moreover, based on the two chloroplast DNA regions (rbcL and matK), MatK was found to be more reliable for differentiating among T. aestivum genotypes. Taken together, using all the studied attributes, a clear taxonomic relationship can be used to identify T. aestivum species and improve their pragmatic production and development.


Assuntos
Variação Genética , Triticum , Variação Genética/genética , Filogenia , Código de Barras de DNA Taxonômico , Marcadores Genéticos/genética , Genótipo
5.
Plants (Basel) ; 10(11)2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34834891

RESUMO

Barley production is essential in Egypt. In the present study, 15 different six-rowed Egyptian barley cultivars were studied. To differentiate between the different cultivars under study in terms of morphological characteristics and ISSR, molecular characterization reactions were carried out. Moreover, four cultivars (Giza 123, Giza 126, Giza 136, and Giza 138) were selected for further studies using scanning electron microscopy (SEM). Computational analysis of the DNA barcoding sequences of the two plastid markers rbcL and matK was executed, and the results were deposited in the NCBI database. The morphological traits showed low statistical significance among the different cultivars under study via the data collected from two seasons, suggesting that the mean field performance of these Egyptian cultivars may be equal under these conditions. The results showed that the phylogenetic tree was divided into four groups, one of which contained the most closely related genotypes in the genetic distance, including Giza 124, Giza 130, Giza 138, Giza 136, and Giza 137, which converge in the indicative uses of farmers. The seed coat of the studied cultivars was "rugose". The elevation folding of the rugose pattern ranged from 11 ± 1.73 µm (Giza 126) to 14.67 ± 2.43 µm (Giza 123), suggesting variation in seed quality and its uses in feed and the food industry. According to the similarity matrix of ISSR analysis, the highest similarity value (93%) was recorded between Giza 133 and Giza 132, as well as between Giza 2000 and Giza 126. On the other hand, the lowest similarity value (80%) was recorded between Giza 130 and (Giza 133 and Giza 132), indicating that these cultivars were distantly related. Polymorphism information content (PIC) ranged from 0.26 for the primer ISSR UBC 835 to 0.37 for the primers ISSR UBC 814 and ISSR UBC 840. The current study showed that the matK gene is more mutable than the rbcL gene among the tested cultivars.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...