Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(20)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34696077

RESUMO

Optical coherence tomography (OCT) is a widely used imaging technique in the micrometer regime, which gained accelerating interest in medical imaging in the last twenty years. In up-to-date OCT literature, certain simplifying assumptions are made for the reconstructions, but for many applications, a more realistic description of the OCT imaging process is of interest. In mathematical models, for example, the incident angle of light onto the sample is usually neglected or a plane wave description for the light-sample interaction in OCT is used, which ignores almost completely the occurring effects within an OCT measurement process. In this article, we make a first step to a quantitative model by considering the measured intensity as a combination of back-scattered Gaussian beams affected by the system. In contrast to the standard plane wave simplification, the presented model includes system relevant parameters, such as the position of the focus and the spot size of the incident laser beam, which allow a precise prediction of the OCT data. The accuracy of the proposed model-after calibration of all necessary system parameters-is illustrated by simulations and validated by a comparison with experimental data obtained from a 1300 nm swept-source OCT system.


Assuntos
Modelos Teóricos , Tomografia de Coerência Óptica , Calibragem
2.
GEM ; 9(1): 145-165, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29606983

RESUMO

In this paper we provide for a first time, to our knowledge, a mathematical model for imaging an anisotropic, orthotropic medium with polarization-sensitive optical coherence tomography. The imaging problem is formulated as an inverse scattering problem in three dimensions for reconstructing the electrical susceptibility of the medium using Maxwell's equations. Our reconstruction method is based on the second-order Born-approximation of the electric field.

3.
Math Methods Appl Sci ; 40(3): 505-522, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28133404

RESUMO

Optical coherence tomography (OCT) and photoacoustic tomography are emerging non-invasive biological and medical imaging techniques. It is a recent trend in experimental science to design experiments that perform photoacoustic tomography and OCT imaging at once. In this paper, we present a mathematical model describing the dual experiment. Because OCT is mathematically modelled by Maxwell's equations or some simplifications of it, whereas the light propagation in quantitative photoacoustics is modelled by (simplifications of) the radiative transfer equation, the first step in the derivation of a mathematical model of the dual experiment is to obtain a unified mathematical description, which in our case are Maxwell's equations. As a by-product, we therefore derive a new mathematical model of photoacoustic tomography based on Maxwell's equations. It is well known by now that without additional assumptions on the medium, it is not possible to uniquely reconstruct all optical parameters from either one of these modalities alone. We show that in the combined approach, one has additional information, compared with a single modality, and the inverse problem of reconstruction of the optical parameters becomes feasible. © 2016 The Authors. Mathematical Methods in the Applied Sciences Published by John Wiley & Sons Ltd.

4.
IEEE Trans Med Imaging ; 29(2): 442-54, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19900849

RESUMO

We present a nonparametric regression method for denoising 3-D image sequences acquired via fluorescence microscopy. The proposed method exploits the redundancy of the 3-D+time information to improve the signal-to-noise ratio of images corrupted by Poisson-Gaussian noise. A variance stabilization transform is first applied to the image-data to remove the dependence between the mean and variance of intensity values. This preprocessing requires the knowledge of parameters related to the acquisition system, also estimated in our approach. In a second step, we propose an original statistical patch-based framework for noise reduction and preservation of space-time discontinuities. In our study, discontinuities are related to small moving spots with high velocity observed in fluorescence video-microscopy. The idea is to minimize an objective nonlocal energy functional involving spatio-temporal image patches. The minimizer has a simple form and is defined as the weighted average of input data taken in spatially-varying neighborhoods. The size of each neighborhood is optimized to improve the performance of the pointwise estimator. The performance of the algorithm (which requires no motion estimation) is then evaluated on both synthetic and real image sequences using qualitative and quantitative criteria.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência/métodos , Microscopia de Vídeo/métodos , Algoritmos , Células HeLa , Humanos , Distribuição Normal , Distribuição de Poisson
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...