Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Biomacromolecules ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713166

RESUMO

Plants undergo substantial biomineralization of silicon, which is deposited primarily in cell walls as amorphous silica. The mineral formation could be moderated by the structure and chemistry of lignin, a polyphenol polymer that is a major constituent of the secondary cell wall. However, the reactions between lignin and silica have not yet been well elucidated. Here, we investigate silica deposition onto a lignin model compound. Polyphenyl propanoid was synthesized from coniferyl alcohol by oxidative coupling with peroxidase in the presence of acidic tetramethyl orthosilicate, a silicic acid precursor. Raman, Fourier transform infrared, and X-ray photoelectron spectroscopies detected changes in lignin formation in the presence of silicic acid. Bonds between the Si-O/Si-OH residues and phenoxyl radicals and lignin functional groups formed during the first 3 h of the reaction, while silica continued to form over 3 days. Thermal gravimetric analysis indicated that lignin yields increased in the presence of silicic acid, possibly via the stabilization of phenolic radicals. This, in turn, resulted in shorter stretches of the lignin polymer. Silica deposition initiated within a lignin matrix via the formation of covalent Si-O-C bonds. The silica nucleants grew into 2-5 nm particles, as observed via scanning transmission electron microscopy and energy-dispersive X-ray spectroscopy. Additional silica precipitated into an extended gel. Collectively, our results demonstrate a reciprocal relation by which lignin polymerization catalyzes the formation of silica, and at the same time silicic acid enhances lignin polymerization and yield.

3.
Ultramicroscopy ; 259: 113936, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38359631

RESUMO

We demonstrate the use of a 4-dimensional scanning transmission electron microscope (4D-STEM) to extract atomic cross section information in amorphous materials. We measure the scattering amplitudes of 200 keV electrons in several representative specimens: amorphous carbon, silica, amorphous ice of pure water, and vitrified phosphate buffer solution. Diffraction patterns are recorded by 4D-STEM with or without energy filter at the zero-loss peak. In addition, Electron Energy Loss Spectroscopy (EELS) data are acquired at several thicknesses and energies. Mixed elastic and inelastic contributions for thick samples can be decoupled based on a convolution model. Measured differential cross sections between 1 and 3 mrad are due primarily to plasmon excitations and follow precisely a 1/θ2 angular distribution. The measured intensities match Inokuti's calculations of total dipole matrix elements for discrete dipole transitions alone, i.e., transitions to bound states of the atom and not to continuum states. We describe the fundamental mechanism of plasmon excitation in insulators as a two-step interaction process with a fast electron. First, a target electron in the specimen is excited, the probability for which follows from the availability of atomic transitions, with a strong dependence on the column of the periodic table. Second, the dielectric response of the material determines the energy loss. The energy of the loss peak depends primarily on the valence electrons. Elastic scattering is dominant at higher angles, and can be fitted conveniently to 1/θ3.7 with a linear dependence on atomic number for light atoms. In order to facilitate the interpretation of 4D STEM measurements in terms of material composition, we introduce two key parameters. Zeta is an analytical equivalent of classical STEM Z-contrast, determined by the ratio of elastic to inelastic scattering coefficients, while eta is the elastic coefficient divided by thickness. The two parameters may serve for identification of basic classes of materials in biological and other amorphous organic specimens.

4.
Front Microbiol ; 14: 1240798, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37692390

RESUMO

Arsenic (As) is a toxic heavy metal widely found in the environment that severely undermines the integrity of water resources. Bioremediation of toxic compounds is an appellative sustainable technology with a balanced cost-effective setup. To pave the way for the potential use of Deinococcus indicus, an arsenic resistant bacterium, as a platform for arsenic bioremediation, an extensive characterization of its resistance to cellular insults is paramount. A comparative analysis of D. indicus cells grown in two rich nutrient media conditions (M53 and TGY) revealed distinct resistance patterns when cells are subjected to stress via UV-C and methyl viologen (MV). Cells grown in M53 demonstrated higher resistance to both UV-C and MV. Moreover, cells grow to higher density upon exposure to 25 mM As(V) in M53 in comparison with TGY. This analysis is pivotal for the culture of microbial species in batch culture bioreactors for bioremediation purposes. We also demonstrate for the first time the presence of polyphosphate granules in D. indicus which are also found in a few Deinococcus species. To extend our analysis, we also characterized DiArsC2 (arsenate reductase) involved in arsenic detoxification and structurally determined different states, revealing the structural evidence for a catalytic cysteine triple redox system. These results contribute for our understanding into the D. indicus resistance mechanism against stress conditions.

5.
J Vis Exp ; (196)2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37427938

RESUMO

Cryogenic electron microscopy (cryo-EM) relies on the imaging of biological or organic specimens embedded in their native aqueous medium; water is solidified into a glass (i.e., vitrified) without crystallization. The cryo-EM method is widely used to determine the structure of biological macromolecules recently at a near-atomic resolution. The approach has been extended to the study of organelles and cells using tomography, but the conventional mode of wide-field transmission EM imaging suffers a severe limitation in the specimen thickness. This has led to a practice of milling thin lamellae using a focused ion beam; the high resolution is obtained by subtomogram averaging from the reconstructions, but three-dimensional relations outside the remaining layer are lost. The thickness limitation can be circumvented by scanned probe imaging, similar to the scanning EM or the confocal laser scanning microscope. While scanning transmission electron microscopy (STEM) in materials science provides atomic resolution in single images, the sensitivity of cryogenic biological specimens to electron irradiation requires special considerations. This protocol presents a setup for cryo-tomography using STEM. The basic topical configuration of the microscope is described for both two- and three-condenser systems, while automation is provided by the non-commercial SerialEM software. Enhancements for batch acquisition and correlative alignment to previously-acquired fluorescence maps are also described. As an example, we show the reconstruction of a mitochondrion, pointing out the inner and outer membrane and calcium phosphate granules, as well as surrounding microtubules, actin filaments, and ribosomes. Cryo-STEM tomography excels in revealing the theater of organelles in the cytoplasm and, in some cases, even the nuclear periphery of adherent cells in culture.


Assuntos
Tomografia com Microscopia Eletrônica , Organelas , Tomografia com Microscopia Eletrônica/métodos , Microscopia Crioeletrônica/métodos , Mitocôndrias , Software
6.
HardwareX ; 14: e00431, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37293572

RESUMO

A 4-dimensional modality of a scanning transmission electron microscope (4D-STEM) acquires diffraction images formed by a coherent and focused electron beam scanning the specimen. Newly developed ultrafast detectors offer a possibility to acquire high throughput diffraction patterns at each pixel of the scan, enabling rapid tilt series acquisition for 4D-STEM tomography. Here we present a solution to the problem of synchronizing the electron probe scan with the diffraction image acquisition, and demonstrate on a fast hybrid-pixel detector camera (ARINA, DECTRIS). Image-guided tracking and autofocus corrections are handled by the freely-available microscope-control software SerialEM, in conjunction with a high angle annular dark field (HAADF) image acquired simultaneously. The open source SavvyScan system offers a versatile set of scanning patterns, operated by commercially available multi-channel acquisition and signal generator computer cards (Spectrum Instrumentation GmbH). Images are recorded only within a sub-region of the total field, so as to avoid spurious data collection during flyback and/or acceleration periods in the scan. Hence, the trigger of the fast camera follows selected pulses from the scan generator clock gated according to the chosen scan pattern. Software and protocol are provided for gating the trigger pulses via a microcontroller (ST Microelectronics ARM Cortex). We demonstrate the system on a standard replica grating and by diffraction imaging of a ferritin specimen.

7.
J Struct Biol ; 215(3): 107982, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37268154

RESUMO

Visualization of organelles and their interactions with other features in the native cell remains a challenge in modern biology. We have introduced cryo-scanning transmission electron tomography (CSTET), which can access 3D volumes on the scale of 1 micron with a resolution of nanometers, making it ideal for this task. Here we introduce two relevant advances: (a) we demonstrate the utility of multi-color super-resolution radial fluctuation light microscopy under cryogenic conditions (cryo-SRRF), and (b) we extend the use of deconvolution processing for dual-axis CSTET data. We show that cryo-SRRF nanoscopy is able to reach resolutions in the range of 100 nm, using commonly available fluorophores and a conventional widefield microscope for cryo-correlative light-electron microscopy. Such resolution aids in precisely identifying regions of interest before tomographic acquisition and enhances precision in localizing features of interest within the 3D reconstruction. Dual-axis CSTET tilt series data and application of entropy regularized deconvolution during post-processing results in close-to-isotropic resolution in the reconstruction without averaging. The integration of cryo-SRRF with deconvolved dual-axis CSTET provides a versatile workflow for studying unique objects in a cell.


Assuntos
Microscopia Crioeletrônica , Células Eucarióticas , Microscopia Eletrônica de Transmissão , Linhagem Celular , Humanos , Células Eucarióticas/ultraestrutura , Fluxo de Trabalho
8.
ACS Appl Mater Interfaces ; 15(19): 23908-23921, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37133217

RESUMO

Two-dimensional (2D) halide perovskites, HaPs, can provide chemical stability to three-dimensional (3D) HaP surfaces, protecting them from exposure to ambient species and from reacting with contacting layers. Both actions occur with 2D HaPs, with the general stoichiometry R2PbI4 (R: long or bulky organic amine) covering the 3D ones. Adding such covering films can also boost power conversion efficiencies of photovoltaic cells by passivating surface/interface trap states. For maximum benefit, we need conformal ultrathin and phase-pure (n = 1) 2D layers to enable efficient tunneling of photogenerated charge carriers through the 2D film barrier. Conformal coverage of ultrathin (<10 nm) R2PbI4 layers on 3D perovskites is challenging with spin coating; even more so is its upscaling for larger-area devices. We report on vapor-phase cation exchange of the 3D surface with the R2PbI4 molecules and real-time in situ growth monitoring by photoluminescence (PL) to determine limits for forming ultrathin 2D layers. We characterize the 2D growth stages, following the changing PL intensity-time profiles, by combining structural, optical, morphological, and compositional characterizations. Moreover, from quantitative X-ray photoelectron spectroscopy (XPS) analysis on 2D/3D bilayer films, we estimate the smallest width of a 2D cover that we can grow to be <5 nm, roughly the limit for efficient tunneling through a (semi)conjugated organic barrier. We also find that, besides protecting the 3D against ambient humidity-induced degradation, the ultrathin 2D-on-3D film also aids self-repair following photodamage.

9.
ACS Energy Lett ; 8(5): 2447-2455, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37206954

RESUMO

In terms of sustainable use, halide perovskite (HaP) semiconductors have a strong advantage over most other classes of materials for (opto)electronics, as they can self-heal (SH) from photodamage. While there is considerable literature on SH in devices, where it may not be clear exactly where damage and SH occur, there is much less on the HaP material itself. Here we perform "fluorescence recovery after photobleaching" (FRAP) measurements to study SH on polycrystalline thin films for which encapsulation is critical to achieving complete and fast self-healing. We compare SH in three photoactive APbI3 perovskite films by varying the A-site cation ranging from (relatively) small inorganic Cs through medium-sized MA to large FA (the last two are organic cations). While the A cation is often considered electronically relatively inactive, it significantly affects both SH kinetics and the threshold for photodamage. The SH kinetics are markedly faster for γ-CsPbI3 and α-FAPbI3 than for MAPbI3. Furthermore, γ-CsPbI3 exhibits an intricate interplay between photoinduced darkening and brightening. We suggest possible explanations for the observed differences in SH behavior. This study's results are essential for identifying absorber materials that can regain intrinsic, insolation-induced photodamage-linked efficiency loss during its rest cycles, thus enabling applications such as autonomously sustainable electronics.

10.
Faraday Discuss ; 240(0): 127-141, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-35938388

RESUMO

Malaria is a potentially fatal infectious disease caused by the obligate intracellular parasite Plasmodium falciparum. The parasite infects human red blood cells (RBC) and derives nutrition by catabolism of hemoglobin. As amino acids are assimilated from the protein component, the toxic heme is released. Molecular heme is detoxified by rapid sequestration to physiologically insoluble hemozoin crystals within the parasite's digestive vacuole (DV). Common antimalarial drugs interfere with this crystallization process, leaving the parasites vulnerable to the by-product of their own metabolism. A fundamental debate with important implications on drug mechanism regards the chemical environment of crystallization in situ, whether aqueous or lipid. This issue had been addressed previously by cryogenic soft X-ray tomography. We employ cryo-scanning transmission electron tomography (CSTET) to probe parasite cells throughout the life cycle in a fully hydrated, vitrified state at higher resolution. During the acquisition of CSTET data, Bragg diffraction from the hemozoin provides a uniquely clear view of the crystal boundary at nanometer resolution. No intermediate medium, such as a lipid coating or shroud, could be detected surrounding the crystals. The present study describes a unique application of CSTET in the study of malaria. The findings can be extended to evaluate new drug candidates affecting hemozoin crystal growth.


Assuntos
Tomografia com Microscopia Eletrônica , Malária , Humanos , Heme/química , Heme/metabolismo , Malária/parasitologia , Lipídeos/química
11.
Org Lett ; 24(28): 5176-5180, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35816696

RESUMO

Forging new C(sp3)-C(sp3) bonds to central positions within a peptide backbone is critical for the development of new therapeutics and chemical probes. Currently, there are no methods for decarboxylating Asp and Glu side chains solid-phase photochemically or using such radicals to form peptide macrocycles. Herein, electron-donor-acceptor complexes between Hantzsch ester and on-resin peptide N-hydroxyphthalimide radical precursors are used to access these radicals, demonstrated with two-carbon homologations and homologation cyclizations of Atosiban and RGDf.


Assuntos
Ésteres , Peptídeos , Ciclização , Peptídeos/química
12.
Proc Natl Acad Sci U S A ; 119(26): e2119101119, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35749363

RESUMO

Cryoelectron tomography of the cell nucleus using scanning transmission electron microscopy and deconvolution processing technology has highlighted a large-scale, 100- to 300-nm interphase chromosome structure, which is present throughout the nucleus. This study further documents and analyzes these chromosome structures. The paper is divided into four parts: 1) evidence (preliminary) for a unified interphase chromosome structure; 2) a proposed unified interphase chromosome architecture; 3) organization as chromosome territories (e.g., fitting the 46 human chromosomes into a 10-µm-diameter nucleus); and 4) structure unification into a polytene chromosome architecture and lampbrush chromosomes. Finally, the paper concludes with a living light microscopy cell study showing that the G1 nucleus contains very similar structures throughout. The main finding is that this chromosome structure appears to coil the 11-nm nucleosome fiber into a defined hollow structure, analogous to a Slinky helical spring [https://en.wikipedia.org/wiki/Slinky; motif used in Bowerman et al., eLife 10, e65587 (2021)]. This Slinky architecture can be used to build chromosome territories, extended to the polytene chromosome structure, as well as to the structure of lampbrush chromosomes.


Assuntos
Núcleo Celular , Cromossomos Humanos , Interfase , Núcleo Celular/genética , Cromatina/genética , Cromossomos Humanos/química , Humanos , Interfase/genética , Nucleossomos/química
13.
Proc Natl Acad Sci U S A ; 119(20): e2119107119, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35544689

RESUMO

A molecular architecture is proposed for a representative mitotic chromosome, human chromosome 10. This architecture is built on an interphase chromosome structure based on cryo-electron microscopy (cryo-EM) cellular tomography [J. Sedat et al., Proc. Natl. Acad. Sci. U.S.A., in press], thus unifying chromosome structure throughout the complete mitotic cycle. The basic organizational principle for mitotic chromosomes is specific coiling of the 11-nm nucleosome fiber into large scale, ∼200-nm interphase structures, a Slinky [https://en.wikipedia.org/wiki/Slinky; motif cited in S. Bowerman et al., eLife 10, e65587 (2021)], then further modified with subsequent additional coiling for the final mitotic chromosome structure. The final mitotic chromosome architecture accounts for the dimensional values as well as the well-known cytological configurations. In addition, proof is experimentally provided by digital PCR technology that G1 T cell nuclei are diploid with one DNA molecule per chromosome. Many nucleosome linker DNA sequences, the promotors and enhancers, are suggestive of optimal exposure on the surfaces of the large-scale coils.


Assuntos
Cromossomos Humanos Par 10 , Empacotamento do DNA , Mitose , Nucleossomos , Núcleo Celular/genética , Cromossomos Humanos Par 10/química , Cromossomos Humanos Par 10/genética , Fase G1 , Humanos , Nucleossomos/química , Nucleossomos/genética , Reação em Cadeia da Polimerase , Linfócitos T/citologia
14.
Biol Imaging ; 2: e7, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-38486831

RESUMO

Thick specimens, as encountered in cryo-scanning transmission electron tomography, offer special challenges to conventional reconstruction workflows. The visibility of features, including gold nanoparticles introduced as fiducial markers, varies strongly through the tilt series. As a result, tedious manual refinement may be required in order to produce a successful alignment. Information from highly tilted views must often be excluded to the detriment of axial resolution in the reconstruction. We introduce here an approach to tilt series alignment based on identification of fiducial particle clusters that transform coherently in rotation, essentially those that lie at similar depth. Clusters are identified by comparison of tilted views with a single untilted reference, rather than with adjacent tilts. The software, called ClusterAlign, proves robust to poor signal to noise ratio and varying visibility of the individual fiducials and is successful in carrying the alignment to the ends of the tilt series where other methods tend to fail. ClusterAlign may be used to generate a list of tracked fiducials, to align a tilt series, or to perform a complete 3D reconstruction. Tools to evaluate alignment error by projection matching are included. Execution involves no manual intervention, and adherence to standard file formats facilitates an interface with other software, particularly IMOD/etomo, tomo3d, and tomoalign.

15.
Proc Natl Acad Sci U S A ; 118(50)2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34876518

RESUMO

Cryo-electron tomography (cryo-ET) allows for the high-resolution visualization of biological macromolecules. However, the technique is limited by a low signal-to-noise ratio (SNR) and variance in contrast at different frequencies, as well as reduced Z resolution. Here, we applied entropy-regularized deconvolution (ER-DC) to cryo-ET data generated from transmission electron microscopy (TEM) and reconstructed using weighted back projection (WBP). We applied deconvolution to several in situ cryo-ET datasets and assessed the results by Fourier analysis and subtomogram analysis (STA).


Assuntos
Microscopia Crioeletrônica/métodos , Entropia , Saccharomyces cerevisiae/citologia , Simulação por Computador , Células HEK293 , Humanos , Tomografia Computadorizada por Raios X
16.
Microsc Microanal ; : 1-12, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34629141

RESUMO

Recent advances in scanning transmission electron microscopy (STEM) have rekindled interest in multi-channel detectors and prompted the exploration of unconventional scan patterns. These emerging needs are not yet addressed by standard commercial hardware. The system described here incorporates a flexible scan generator that enables exploration of low-acceleration scan patterns, while data are recorded by a scalable eight-channel array of nonmultiplexed analog-to-digital converters. System integration with SerialEM provides a flexible route for automated acquisition protocols including tomography. Using a solid-state quadrant detector with additional annular rings, we explore the generation and detection of various STEM contrast modes. Through-focus bright-field scans relate to phase contrast, similarly to wide-field TEM. More strikingly, comparing images acquired from different off-axis detector elements reveals lateral shifts dependent on defocus. Compensation of this parallax effect leads to decomposition of integrated differential phase contrast (iDPC) to separable contributions relating to projected electric potential and to defocus. Thus, a single scan provides both a computationally refocused phase contrast image and a second image in which the signed intensity, bright or dark, represents the degree of defocus.

17.
Org Lett ; 23(21): 8219-8223, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34648297

RESUMO

The compatibility of photochemistry with solid-phase peptide synthesis is demonstrated via photochemical hydroalkylation to form C(sp3)-C(sp3) bonds between on-resin Giese acceptors and redox-active esters. Both iridium-based photocatalysts and Hantszch ester led to high yields, with final reaction conditions producing full conversions within 30 min under ambient conditions. The chemistry is compatible with a broad range of peptide side chains, redox-active esters, and resin. These conditions represent the first example of photochemical peptide modifications on resin.


Assuntos
Técnicas de Síntese em Fase Sólida
18.
Acc Chem Res ; 54(19): 3621-3631, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34491730

RESUMO

Electron microscopy (EM) is the most versatile tool for the study of matter at scales ranging from subatomic to visible. The high vacuum environment and the charged irradiation require careful stabilization of many specimens of interest. Biological samples are particularly sensitive due to their composition of light elements suspended in an aqueous medium. Early investigators developed techniques of embedding and staining with heavy metal salts for contrast enhancement. Indeed, the Nobel Prize in 1974 recognized Claude, de Duve, and Palade for establishment of the field of cell biology, largely due to their developments in separation and preservation of cellular components for electron microscopy. A decade later, cryogenic fixation was introduced. Vitrification of the water avoids the need for dehydration and provides an ideal matrix in which the organic macromolecules are suspended; the specimen represents a native state, suddenly frozen in time at temperatures below -150 °C. The low temperature maintains a low vapor pressure for the electron microscope, and the amorphous nature of the medium avoids diffraction contrast from crystalline ice. Such samples are extremely delicate, however, and cryo-EM imaging is a race for information in the face of ongoing damage by electron irradiation. Through this journey, cryo-EM enhanced the resolution scale from membranes to molecules and most recently to atoms. Cryo-EM pioneers, Dubochet, Frank, and Henderson, were awarded the Nobel Prize in 2017 for high resolution structure determination of biological macromolecules.A relatively untapped feature of cryo-EM is its preservation of composition. Nothing is added and nothing removed. Analytical spectroscopies based on electron energy loss or X-ray emission can be applied, but the very small interaction cross sections conflict with the weak exposures required to preserve sample integrity. To what extent can we interpret quantitatively the pixel intensities in images themselves? Conventional cryo-transmission electron microscopy (TEM) is limited in this respect, due to the strong dependence of the contrast transfer on defocus and the absence of contrast at low spatial frequencies.Inspiration comes largely from a different modality for cryo-tomography, using soft X-rays. Contrast depends on the difference in atomic absorption between carbon and oxygen in a region of the spectrum between their core level ionization energies, the so-called water window. Three dimensional (3D) reconstruction provides a map of the local X-ray absorption coefficient. The quantitative contrast enables the visualization of organic materials without stain and measurement of their concentration quantitatively. We asked, what aspects of the quantitative contrast might be transferred to cryo-electron microscopy?Compositional contrast is accessible in scanning transmission EM (STEM) via incoherent elastic scattering, which is sensitive to the atomic number Z. STEM can be regarded as a high energy, low angle diffraction measurement performed pixel by pixel with a weakly convergent beam. When coherent diffraction effects are absent, that is, in amorphous materials, a dark field signal measures quantitatively the flux scattered from the specimen integrated over the detector area. Learning to interpret these signals will open a new dimension in cryo-EM. This Account describes our efforts so far to introduce STEM for cryo-EM and tomography of biological specimens. We conclude with some thoughts on further developments.


Assuntos
Substâncias Macromoleculares/química , Microscopia Crioeletrônica , Microscopia Eletrônica de Transmissão e Varredura
19.
J Exp Bot ; 72(13): 4593-4595, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34157118

Assuntos
Juglans
20.
ChemMedChem ; 16(10): 1515-1532, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33523575

RESUMO

The biogenic formation of hemozoin crystals, a crucial process in heme detoxification by the malaria parasite, is reviewed as an antimalarial drug target. We first focus on the in-vivo formation of hemozoin. A model is presented, based on native-contrast 3D imaging obtained by X-ray and electron microscopy, that hemozoin nucleates at the inner membrane leaflet of the parasitic digestive vacuole, and grows in the adjacent aqueous medium. Having observed quantities of hemoglobin and hemozoin in the digestive vacuole, we present a model that heme liberation from hemoglobin and hemozoin formation is an assembly-line process. The crystallization is preceded by reaction between heme monomers yielding hematin dimers involving fewer types of isomers than in synthetic hemozoin; this is indicative of protein-induced dimerization. Models of antimalarial drugs binding onto hemozoin surfaces are reviewed. This is followed by a description of bromoquine, a chloroquine drug analogue, capping a significant fraction of hemozoin surfaces within the digestive vacuole and accumulation of the drug, presumably a bromoquine-hematin complex, at the vacuole's membrane.


Assuntos
Hemeproteínas/química , Malária/parasitologia , Plasmodium falciparum/química , Cristalografia por Raios X , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...