Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurophysiol ; 123(1): 134-148, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31721644

RESUMO

Speech is our most important form of communication, yet we have a poor understanding of how communication sounds are processed by the brain. Mice make great model organisms to study neural processing of communication sounds because of their rich repertoire of social vocalizations and because they have brain structures analogous to humans, such as the auditory midbrain nucleus inferior colliculus (IC). Although the combined roles of GABAergic and glycinergic inhibition on vocalization selectivity in the IC have been studied to a limited degree, the discrete contributions of GABAergic inhibition have only rarely been examined. In this study, we examined how GABAergic inhibition contributes to shaping responses to pure tones as well as selectivity to complex sounds in the IC of awake mice. In our set of long-latency neurons, we found that GABAergic inhibition extends the evoked firing rate range of IC neurons by lowering the baseline firing rate but maintaining the highest probability of firing rate. GABAergic inhibition also prevented IC neurons from bursting in a spontaneous state. Finally, we found that although GABAergic inhibition shaped the spectrotemporal response to vocalizations in a nonlinear fashion, it did not affect the neural code needed to discriminate vocalizations, based either on spiking patterns or on firing rate. Overall, our results emphasize that even if GABAergic inhibition generally decreases the firing rate, it does so while maintaining or extending the abilities of neurons in the IC to code the wide variety of sounds that mammals are exposed to in their daily lives.NEW & NOTEWORTHY GABAergic inhibition adds nonlinearity to neuronal response curves. This increases the neuronal range of evoked firing rate by reducing baseline firing. GABAergic inhibition prevents bursting responses from neurons in a spontaneous state, reducing noise in the temporal coding of the neuron. This could result in improved signal transmission to the cortex.


Assuntos
Percepção Auditiva/fisiologia , Comportamento Animal/fisiologia , Fenômenos Eletrofisiológicos/fisiologia , Colículos Inferiores/fisiologia , Receptores de GABA-A/fisiologia , Animais , Percepção Auditiva/efeitos dos fármacos , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Feminino , Antagonistas de Receptores de GABA-A/farmacologia , Colículos Inferiores/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos CBA , Receptores de GABA-A/efeitos dos fármacos , Vocalização Animal/fisiologia , Vigília/fisiologia
2.
Hear Res ; 344: 13-23, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27838373

RESUMO

The neurochemical serotonin (5-hydroxytryptamine, 5-HT) is involved in a variety of behavioral functions including arousal, reward, and attention, and has a role in several complex disorders of the brain. In the auditory system, 5-HT fibers innervate a number of subcortical nuclei, yet the modulatory role of 5-HT in nearly all of these areas remains poorly understood. In this study, we examined spiking activity of neurons in the dorsal cochlear nucleus (DCN) following iontophoretic application of 5-HT. The DCN is an early site in the auditory pathway that receives dense 5-HT fiber input from the raphe nuclei and has been implicated in the generation of auditory disorders marked by neuronal hyperexcitability. Recordings from the DCN in awake mice demonstrated that iontophoretic application of 5-HT had heterogeneous effects on spiking rate, spike timing, and evoked spiking threshold. We found that 56% of neurons exhibited increases in spiking rate during 5-HT delivery, while 22% had decreases in rate and the remaining neurons had no change. These changes were similar for spontaneous and evoked spiking and were typically accompanied by changes in spike timing. Spiking increases were associated with lower first spike latencies and jitter, while decreases in spiking generally had opposing effects on spike timing. Cases in which 5-HT application resulted in increased spiking also exhibited lower thresholds compared to the control condition, while cases of decreased spiking had no threshold change. We also found that the 5-HT2 receptor subtype likely has a role in mediating increased excitability. Our results demonstrate that 5-HT can modulate activity in the DCN of awake animals and that it primarily acts to increase neuronal excitability, in contrast to other auditory regions where it largely has a suppressive role. Modulation of DCN function by 5-HT has implications for auditory processing in both normal hearing and disordered states.


Assuntos
Percepção Auditiva/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Núcleo Coclear/efeitos dos fármacos , Receptores 5-HT2 de Serotonina/efeitos dos fármacos , Neurônios Serotoninérgicos/efeitos dos fármacos , Agonistas do Receptor 5-HT2 de Serotonina/administração & dosagem , Serotonina/administração & dosagem , Estimulação Acústica , Animais , Núcleo Coclear/metabolismo , Eletroencefalografia , Potenciais Evocados Auditivos do Tronco Encefálico/efeitos dos fármacos , Feminino , Iontoforese , Masculino , Camundongos Endogâmicos CBA , Tempo de Reação/efeitos dos fármacos , Receptores 5-HT2 de Serotonina/metabolismo , Neurônios Serotoninérgicos/metabolismo , Serotonina/metabolismo , Fatores de Tempo
3.
Front Neuroanat ; 9: 168, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26834578

RESUMO

The response of sensory neurons to stimuli can be modulated by a variety of factors including attention, emotion, behavioral context, and disorders involving neuromodulatory systems. For example, patients with Parkinson's disease (PD) have disordered speech processing, suggesting that dopamine alters normal representation of these salient sounds. Understanding the mechanisms by which dopamine modulates auditory processing is thus an important goal. The principal auditory midbrain nucleus, the inferior colliculus (IC), is a likely location for dopaminergic modulation of auditory processing because it contains dopamine receptors and nerve terminals immunoreactive for tyrosine hydroxylase (TH), the rate-limiting enzyme in dopamine synthesis. However, the sources of dopaminergic input to the IC are unknown. In this study, we iontophoretically injected a retrograde tracer into the IC of mice and then stained the tissue for TH. We also immunostained for dopamine beta-hydroxylase (DBH), an enzyme critical for the conversion of dopamine to norepinephrine, to differentiate between dopaminergic and noradrenergic inputs. Retrogradely labeled neurons that were positive for TH were seen bilaterally, with strong ipsilateral dominance, in the subparafascicular thalamic nucleus (SPF). All retrogradely labeled neurons that we observed in other brain regions were TH-negative. Projections from the SPF were confirmed using an anterograde tracer, revealing TH-positive and DBH-negative anterogradely labeled fibers and terminals in the IC. While the functional role of this dopaminergic input to the IC is not yet known, it provides a potential mechanism for context dependent modulation of auditory processing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...