Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NPJ Microgravity ; 8(1): 51, 2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-36404345

RESUMO

The tropics is the nexus for many of the remaining gaps in our knowledge of environmental science, including the carbon cycle and atmospheric chemistry, with dire consequences for our ability to describe the Earth system response to a warming world. Difficulties associated with accessibility, coordinated funding models and economic instabilities preclude the establishment of a dense pan-tropical ground-based atmospheric measurement network that would otherwise help to describe the evolving state of tropical ecosystems and the associated biosphere-atmosphere fluxes on decadal timescales. The growing number of relevant sensors aboard sun-synchronous polar orbiters provide invaluable information over the remote tropics, but a large fraction of the data collected along their orbits is from higher latitudes. The International Space Station (ISS), which is in a low-inclination, precessing orbit, has already demonstrated value as a proving ground for Earth observing atmospheric sensors and as a testbed for new technology. Because low-inclination orbits spend more time collecting data over the tropics, we argue that the ISS and its successors, offer key opportunities to host new Earth-observing atmospheric sensors that can lead to a step change in our understanding of tropical carbon fluxes.

2.
Geophys Res Lett ; 49(5): e2021GL097540, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35859934

RESUMO

Using the multiyear archive of the two Orbiting Carbon Observatories (OCO) of NASA, we have retrieved large fossil fuel CO2 emissions (larger than 1.0 ktCO2 h-1 per 10-2 square degree grid cell) over the globe with a simple plume cross-sectional inversion approach. We have compared our results with a global gridded and hourly inventory. The corresponding OCO emission retrievals explain more than one third of the inventory variance at the corresponding cells and hours. We have binned the data at diverse time scales from the year (with OCO-2) to the average morning and afternoon (with OCO-3). We see consistent variations of the median emissions, indicating that the retrieval-inventory differences (with standard deviations of a few tens of percent) are mostly random and that trends can be calculated robustly in areas of favorable observing conditions, when the future satellite CO2 imagers provide an order of magnitude more data.

3.
Proc Natl Acad Sci U S A ; 118(46)2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34753820

RESUMO

The COVID-19 global pandemic and associated government lockdowns dramatically altered human activity, providing a window into how changes in individual behavior, enacted en masse, impact atmospheric composition. The resulting reductions in anthropogenic activity represent an unprecedented event that yields a glimpse into a future where emissions to the atmosphere are reduced. Furthermore, the abrupt reduction in emissions during the lockdown periods led to clearly observable changes in atmospheric composition, which provide direct insight into feedbacks between the Earth system and human activity. While air pollutants and greenhouse gases share many common anthropogenic sources, there is a sharp difference in the response of their atmospheric concentrations to COVID-19 emissions changes, due in large part to their different lifetimes. Here, we discuss several key takeaways from modeling and observational studies. First, despite dramatic declines in mobility and associated vehicular emissions, the atmospheric growth rates of greenhouse gases were not slowed, in part due to decreased ocean uptake of CO2 and a likely increase in CH4 lifetime from reduced NO x emissions. Second, the response of O3 to decreased NO x emissions showed significant spatial and temporal variability, due to differing chemical regimes around the world. Finally, the overall response of atmospheric composition to emissions changes is heavily modulated by factors including carbon-cycle feedbacks to CH4 and CO2, background pollutant levels, the timing and location of emissions changes, and climate feedbacks on air quality, such as wildfires and the ozone climate penalty.


Assuntos
Poluição do Ar , Atmosfera/química , COVID-19/psicologia , Gases de Efeito Estufa , Modelos Teóricos , COVID-19/epidemiologia , Dióxido de Carbono , Mudança Climática , Humanos , Metano , Óxidos de Nitrogênio , Ozônio
4.
Nat Commun ; 10(1): 3811, 2019 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-31444348

RESUMO

Isoprene is the atmosphere's most important non-methane organic compound, with key impacts on atmospheric oxidation, ozone, and organic aerosols. In-situ isoprene measurements are sparse, and satellite-based constraints have employed an indirect approach using its oxidation product formaldehyde, which is affected by non-isoprene sources plus uncertainty and spatial smearing in the isoprene-formaldehyde relationship. Direct global isoprene measurements are therefore needed to better understand its sources, sinks, and atmospheric impacts. Here we show that the isoprene spectral signatures are detectable from space using the satellite-borne Cross-track Infrared Sounder (CrIS), develop a full-physics retrieval methodology for quantifying isoprene abundances from these spectral features, and apply the algorithm to CrIS measurements over Amazonia. The results are consistent with model output and in-situ data, and establish the feasibility of direct global space-based isoprene measurements. Finally, we demonstrate the potential for combining space-based measurements of isoprene and formaldehyde to constrain atmospheric oxidation over isoprene source regions.

5.
Science ; 362(6418)2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30498098

RESUMO

Chevallier showed a column CO2 ([Formula: see text]) anomaly of ±0.5 parts per million forced by a uniform net biosphere exchange (NBE) anomaly of 2.5 gigatonnes of carbon over the tropical continents within a year, so he claimed that the inferred NBE uncertainties should be larger than presented in Liu et al We show that a much concentrated NBE anomaly led to much larger [Formula: see text] perturbations.

6.
Proc Natl Acad Sci U S A ; 115(31): 7860-7868, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-29987011

RESUMO

The impact of human emissions of carbon dioxide and methane on climate is an accepted central concern for current society. It is increasingly evident that atmospheric concentrations of carbon dioxide and methane are not simply a function of emissions but that there are myriad feedbacks forced by changes in climate that affect atmospheric concentrations. If these feedbacks change with changing climate, which is likely, then the effect of the human enterprise on climate will change. Quantifying, understanding, and articulating the feedbacks within the carbon-climate system at the process level are crucial if we are to employ Earth system models to inform effective mitigation regimes that would lead to a stable climate. Recent advances using space-based, more highly resolved measurements of carbon exchange and its component processes-photosynthesis, respiration, and biomass burning-suggest that remote sensing can add key spatial and process resolution to the existing in situ systems needed to provide enhanced understanding and advancements in Earth system models. Information about emissions and feedbacks from a long-term carbon-climate observing system is essential to better stewardship of the planet.

7.
Science ; 358(6360)2017 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-29026011

RESUMO

The 2015-2016 El Niño led to historically high temperatures and low precipitation over the tropics, while the growth rate of atmospheric carbon dioxide (CO2) was the largest on record. Here we quantify the response of tropical net biosphere exchange, gross primary production, biomass burning, and respiration to these climate anomalies by assimilating column CO2, solar-induced chlorophyll fluorescence, and carbon monoxide observations from multiple satellites. Relative to the 2011 La Niña, the pantropical biosphere released 2.5 ± 0.34 gigatons more carbon into the atmosphere in 2015, consisting of approximately even contributions from three tropical continents but dominated by diverse carbon exchange processes. The heterogeneity of the carbon-exchange processes indicated here challenges previous studies that suggested that a single dominant process determines carbon cycle interannual variability.

8.
Science ; 358(6360)2017 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-29026015

RESUMO

Spaceborne measurements by NASA's Orbiting Carbon Observatory-2 (OCO-2) at the kilometer scale reveal distinct structures of atmospheric carbon dioxide (CO2) caused by known anthropogenic and natural point sources. OCO-2 transects across the Los Angeles megacity (USA) show that anthropogenic CO2 enhancements peak over the urban core and decrease through suburban areas to rural background values more than ~100 kilometers away, varying seasonally from ~4.4 to 6.1 parts per million. A transect passing directly downwind of the persistent isolated natural CO2 plume from Yasur volcano (Vanuatu) shows a narrow filament of enhanced CO2 values (~3.4 parts per million), consistent with a CO2 point source emitting 41.6 kilotons per day. These examples highlight the potential of the OCO-2 sensor, with its unprecedented resolution and sensitivity, to detect localized natural and anthropogenic CO2 sources.

9.
Appl Opt ; 45(9): 2014-27, 2006 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-16579572

RESUMO

We examine the extent to which three physical aerosol parameters--effective radius, composition (sulfate weight percent), and total volume-can be determined from infrared transmission spectra. Using simulated transmission data over the range 800-4750 cm(-1) (12.5-2.1 microm) and errors taken from the infrared spectral measurements of the Atmospheric Trace Molecule Spectroscopy (ATMOS) instrument, we use optimal estimation to recover these aerosol parameters. Uncertainties in these are examined as a function of the size, composition, and loading of stratospheric aerosols and of the spectral range employed. Using the entire spectral range above, we retrieve all three parameters with a precision to within 3% if the size distribution form is known. Additional errors result, however, from an uncertainty in the size distribution width. These are small (only a few percent) for composition and total volume but are substantial (as much as 50%) for effective radius. Errors also increase substantially when the spectral range is reduced. The retrieved effective radius can have an error of 100% or greater for typical stratospheric aerosol sizes when the spectral range is restricted to the lower wavenumber part of the range. For good accuracy in effective radius, the spectral range must extend beyond approximately 3000 cm(-1). Composition and total volume are less sensitive to the spectral range than effective radius. These simulations were carried out with modeled data to test the potential accuracy of stratospheric sulfate aerosol retrievals from the Atmospheric Chemistry Experiment (ACE). Because of the limitations that result from the use of simulated data, we have tested our retrieval algorithm using ATMOS spectra in different filter regions and present here the aerosol parameters obtained.

10.
Appl Opt ; 42(12): 2140-54, 2003 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-12716156

RESUMO

Infrared transmission spectra were recorded by the Jet Propulsion Laboratory MkIV interferometer during flights aboard the NASA DC-8 aircraft as part of the Airborne Arctic Stratospheric Expedition II (AASE II) mission in the early months of 1992. In our research, we infer the properties of the stratospheric aerosols from these spectra. The instrument employs two different detectors, a HgCdTe photoconductor for 650-1850 cm(-1) and an InSb photodiode for 1850-5650 cm(-1), to simultaneously record the solar intensity throughout the mid-infrared. These spectra have been used to retrieve the concentrations of a large number of gases, including chlorofluorocarbons, NOy species, O3, and ozone-depleting gases. We demonstrate how the residual continua spectra, obtained after accounting for the absorbing gases, can be used to obtain information about the stratospheric aerosols. Infrared extinction spectra are calculated for a range of modeled aerosol size distributions and compositions with Mie theory and fitted to the measured residual spectra. By varying the size distribution parameters and sulfate weight percent, we obtain the microphysical properties of the aerosols that best fit the observations. The effective radius of the aerosols is found to be between 0.4 and 0.6 microm, consistent with that derived from a large number of instruments in this post-Pinatubo period. We demonstrate how different parts of the spectral range can be used to constrain the range of possible values of this size parameter and show how the broad spectral bandpass of the MkIV instrument presents a great advantage for retrieval ofboth aerosol size a nd composition over instruments with a more limited spectral range. The aerosol composition that provides the best fit to the measured spectra is a 70-75% sulfuric acid solution, in good agreement with that obtained from thermodynamic considerations.

11.
Appl Opt ; 41(33): 6968-79, 2002 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-12463241

RESUMO

Version 3 of the Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment data set for some 30 trace and minor gas profiles is available. From the IR solar-absorption spectra measured during four Space Shuttle missions (in 1985, 1992, 1993, and 1994), profiles from more than 350 occultations were retrieved from the upper troposphere to the lower mesosphere. Previous results were unreliable for tropospheric retrievals, but with a new global-fitting algorithm profiles are reliably returned down to altitudes as low as 6.5 km (clouds permitting) and include notably improved retrievals of H2O, CO, and other species. Results for stratospheric water are more consistent across the ATMOS spectral filters and do not indicate a net consumption of H2 in the upper stratosphere. A new sulfuric-acid aerosol product is described. An overview of ATMOS Version 3 processing is presented with a discussion of estimated uncertainties. Differences between these Version 3 and previously reported Version 2 ATMOS results are discussed. Retrievals are available at http://atmos.jpl.nasa.gov/atmos.

12.
Appl Opt ; 41(15): 2768-80, 2002 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-12027163

RESUMO

High-resolution infrared nongas absorption spectra derived from the Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment are analyzed for evidence of the presence of cirrus clouds. Several nonspherical ice extinction models based on realistic size distributions and crystal habits along with a stratospheric sulfate aerosol model are fit to the spectra, and comparisons are made with different model combinations. Nonspherical ice models often fit observed transmission spectra better than a spherical Mie ice model, and some discrimination among nonspherical models is noted. The ATMOS lines of sight for eight occultations are superimposed on coincident geostationary satellite infrared imagery, and brightness temperatures along the lines of sight are compared with retrieved vertical temperature profiles. With these comparisons, studies of two cases of clear sky, three cases of opaque cirrus, and three cases of patchy cirrus are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...