Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Prog ; 106(3): 368504231201542, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37731342

RESUMO

Fluid flow chronologically is widely recognized due to its various uses in turbines, the framework of spinning magnet stars, gyromagnetic generators, and chemical engineers observing the progression of petroleum through the aquifer, and blood vessels in the respiratory alveolar plate. Tropical cyclones, pools of water, and storms all exhibit rotational movement. The current investigation aims to analyse the micro polar fluid flow between two infinite vertical discs enclosing Hall impact, varying thermal conductivity, heat flux as well as anomalous heat generation. The implication of a chemical change combined with chemical potential improves mass propagation. Suitable similarity conversions are used to convert the defined problems into conventional differential equations (ODEs). Furthermore, by introducing new variables the ODEs are transformed into nonlinear coupled ODEs and then solved numerically by the RK 4th order along with the shooting technique. The velocity profiles decrease as suction parameter increases. The temperature field exhibits a rising behaviour for the increasing values of thermophoresis, Brownian and radiations parameters while the concentration field shows a decreasing behaviour. Shear stress at the upper wall increases when the rotation variable and suction variable are augmented. Heat transmission escalations at the bottom wall when Prandtl number and radiation factor are enhanced. The novelty of the present work is to examine the Buongionro model in the presence of a heat source and chemical reaction inside the Darcian porous rotating channel, which has not been investigated yet. In some limiting cases, a comparison of the on-going study with existing literature is also included to justify the contemplated problem.

2.
Sci Rep ; 13(1): 13461, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37596341

RESUMO

Bridges are among the most vulnerable structures to earthquake damage. Most bridges are seismically inadequate due to outdated bridge design codes and poor construction methods in developing countries. Although expensive, experimental studies are useful in evaluating bridge piers. As an alternative, numerical tools are used to evaluate bridge piers, and many numerical techniques can be applied in this context. This study employs Abaqus/Explicit, a finite element program, to model bridge piers nonlinearly and validate the proposed computational method using experimental data. In the finite element program, a single bridge pier having a circular geometry that is being subjected to a monotonic lateral load is simulated. In order to depict damages, Concrete Damage Plasticity (CDP), a damage model based on plasticity, is adopted. Concrete crushing and tensile cracking are the primary failure mechanisms as per CDP. The CDP parameters are determined by employing modified Kent and Park model for concrete compressive behavior and an exponential relation for tension stiffening. The performance of the bridge pier is investigated using an existing evaluation criterion. The influence of the stress-strain relation, the compressive strength of concrete, and geometric configuration are taken into consideration during the parametric analysis. It has been observed that the stress-strain relation, concrete strength, and configuration all have a significant impact on the column response.

3.
Sci Rep ; 13(1): 5459, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37016068

RESUMO

In the current analysis, we examine the heat transmission analysis of nanofluid (NF) movement impinging on a porous extending sheet. The influence of nonlinear thermal radiation (TR), buoyancy force, and slip at the boundary are also examined. The leading partial differential equations (PDEs) are altered to convectional differential equation (ODEs) by suitable transformation. The ODEs are then transformed to first order by introducing the innovative variables and elucidated numerically using bvph2. The Skin Friction (SF) and Nusselt number (NN) are elaborated in detail for Al2O3, Cu, and TiO2 nanoparticles. For validation of the code, ND-solve approach is also applied. The novelty of the current effort is inspect NF flow with heat transfer over extending sheet enclosing thermal and slip effect at the boundary numerically. The thickness of boundary layer increases as the temperature and radiation factors are increased. It is perceived that the fluid velocity decays with the growing values of volume fraction parameter. When permeability and velocity slip parameters are improved the velocity outline enhances. It is investigated that the temperature inside the fluid enhances as the values of velocity slip factor, permeability factor and Biot number are augmented. For the growing values of temperature ratio, volume friction, and thermophoresis factor the temperature is enhances. It is detected that the slip factor causes the friction factor to decrease. Furthermore, the existent study is associated with the preceding.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...